MATLAB®
External Interfaces

it
y

MATLAB

R2019%a =) MathWorks:

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

MATLAB® External Interfaces
© COPYRIGHT 1984-2019 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History

December 1996
July 1997
January 1998
October 1998
November 2000

June 2001

July 2002
January 2003
June 2004
October 2004
September 2005
March 2006
September 2006
March 2007
September 2007
March 2008
October 2008
March 2009
September 2009
March 2010
September 2010
April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014
March 2015
September 2015
March 2016
September 2016
March 2017
September 2017
March 2018
September 2018
March 2019

First printing
Online only
Second printing
Third printing
Fourth printing

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

New for MATLAB 5 (release 8)
Revised for MATLAB 5.1 (Release 9)
Revised for MATLAB 5.2 (Release 10)
Revised for MATLAB 5.3 (Release 11)

Revised and renamed for MATLAB 6.0 (Release

12)

Revised for MATLAB 6.1 (Release 12.1)
Revised for MATLAB 6.5 (Release 13)
Revised for MATLAB 6.5.1 (Release 13SP1)
Revised for MATLAB 7.0 (Release 14)
Revised for MATLAB 7.0.1 (Release 14SP1)
Revised for MATLAB 7.1 (Release 14SP3)
Revised for MATLAB 7.2 (Release 2006a)
Revised for MATLAB 7.3 (Release 2006b)
Revised for MATLAB 7.4 (Release 2007a)
Revised for MATLAB 7.5 (Release 2007b)
Revised for MATLAB 7.6 (Release 2008a)
Revised for MATLAB 7.7 (Release 2008b)
Revised for MATLAB 7.8 (Release 2009a)
Revised for MATLAB 7.9 (Release 2009b)
Revised for MATLAB 7.10 (Release 2010a)
Revised for MATLAB 7.11 (Release 2010b)
Revised for MATLAB 7.12 (Release 2011a)
Revised for MATLAB 7.13 (Release 2011b)
Revised for MATLAB 7.14 (Release 2012a)
Revised for MATLAB 8.0 (Release 2012b)
Revised for MATLAB 8.1 (Release 2013a)
Revised for MATLAB 8.2 (Release 2013b)
Revised for MATLAB 8.3 (Release 2014a)
Revised for MATLAB 8.4 (Release 2014b)
Revised for MATLAB 8.5 (Release 2015a)
Revised for MATLAB 8.6 (Release 2015b)
Revised for MATLAB 9.0 (Release 2016a)
Revised for MATLAB 9.1 (Release 2016b)
Revised for MATLAB 9.2 (Release 2017a)
Revised for MATLAB 9.3 (Release 2017b)
Revised for MATLAB 9.4 (Release 2018a)
Revised for MATLAB 9.5 (Release 2018b)
Revised for MATLAB 9.6 (Release 2019a)

Contents

External Programming Languages and Systems

1]

Integrate MATLAB with External Programming Languages and

Systems 1-2
CallC/C++ Code from MATLAB 1-2
Use Objects from Other Programming Languages in MATLAB

... 1-3
Call MATLAB from Another Programming Language 1-3
Call Your Functions as MATLAB Functions 1-4
Communicate with Web Services 1-4

External Data Interface (EDI)

2|

Create Arrays with C++ MATLAB Data API 2-2
Create ATTaysot e 2-2
Operate on Each ElementinanArray 2-3

Copy C++ MATLAB Data Arrayscoovuun... 2-5
Avoid Unnecessary Data Copyingcou.... 2-5

CH+ Cell Arrayst 2-7

Access C++ Data Array Container Elements 2-9
Modify By Reference 2-9
Copy Data from Container 2-9

Operate on C++ Arrays Using Visitor Pattern 2-11
Dispatch on Array or Array Reference 2-11
Overloading operator()t .. 2-11
Visitor Class to Display Contents of Cell Array 2-12

vi

Contents

Visitor Class to Modify Contents of Cell Array

MATLAB Data API Exceptions

matlab:
matlab:
matlab:
matlab:
matlab:
matlab:
matlab:
matlab:
matlab:
matlab:
matlab:

:data:
:data:
:data:
:data:
:data:
:data:
:data:
:data:
:data:
:data:
:data:

:CanOnlyUseOneStringIndexException
:CantAssignArrayToThisArrayException
:CantIndexIntoEmptyArrayException
:DuplicateFieldNameInStructArrayException . .
:FailedToLoadLibMatlabDataArrayException . .
:FailedToResolveSymbolException
:InvalidArrayIndexException
:InvalidDimensionsInSparseArrayException . . .
:InvalidFieldNameException
:MustSpecifyClassNameException
:NonAsciiCharInRequestedAsciiOutputException

matlab::
matlab::
matlab::
matlab::
matlab::
matlab::
matlab::
matlab::
matlab::
matlab::
matlab::

::NonAsciiCharInIlnputDataException
::InvalidArrayTypeException
::NotEnoughIndicesProvidedException
::StringIndexMustBeLastException
::StringIndexNotValidException
::SystemErrorException
::TooManyIndicesProvidedException
::TypeMismatchException
::WrongNumberOfEnumsSuppliedException . . .
:InvalidMemoryLayout
::InvalidDimensionsInRowMajorArrayException

MATIAB Data APITypes

matlab::
matlab::
matlab::
matlab::
matlab::
matlab::

data
data
data
data
data
data

s:ArrayDimensions
wEnumeration L.
=MATLABString

zObjectArray
=String ...
aStruct ..

buffer ptr t and buffer deleter t

iterator

const iterator
reference . .
const reference
Reference Types ...

2-17
2-17
2-18
2-18
2-18
2-18
2-18
2-18
2-18
2-18
2-19

2-19
2-19
2-19
2-19
2-19
2-19
2-20
2-20
2-20
2-20
2-20

2-20

Using Java Libraries from MATLAB

3|

Getting Started with Java Libraries 3-2
Platform Support for JVM Software 3-2
Learn More About Java Programming Language 3-2

CallJavaMethod 3-4
Choose Class Constructor to Create Java Object 34
Shorten Class Nameuiiiiiineneinnnnnn 3-4
Create Array List i 3-4
Pass MATLAB Data to add Method 3-5
Add Elements to ArrayList 3-5
Java Objects Are References in MATLAB 3-5
Use ArrayList Object in MATLAB 3-6

Simplify Java Class Names Using import Function 3-8

JavaClassPath 3-10

StaticPath 3-12
Create javaclasspath.txtFile 3-12
Add Individual (Unpackaged) Classes 3-13
Add Packagest 3-13
AddJARFile Classescvvi it 3-13

Load Java Class Definitions 3-15

Locate Native Method Libraries 3-16

Load Class Using Java Class.forName Method 3-17

DynamicPath, 3-18

Call Method in YourOwn JavaClass 3-19

How MATLAB Represents Java Arrays 3-21
Array Indexing i 3-21
Shape of Java ATrayscviiiin i 3-21
Interpret Size of Java Arraysc.ciiiiiiin. .. 3-22
Interpret Number of Dimensions of Java Arrays 3-23
Display Java Vector 3-23

viii

Contents

Create Array of Java Objects
Create Array of Primitive Java Types

Access Elements of JavaArray
MATLAB Array Indexing
Single Subscript Indexing
Colon Operator Indexing o.....
Using ENDina Subscript
Converting Object Array Elements to MATLAB Types

Assign Values to JavaArray
Single Subscript Indexing Assignment
Linear Array Assignmentoouunn...
Empty Matrix Assignment
Subscripted Deletion

Concatenate Java Arrays,
Two-Dimensional Horizontal Concatenation
Vector Concatenation

Create Java Array References
Create Copyof JavaArray

Construct and Concatenate Java Objects
Create Java Object i,
Concatenate Objects of Same Class
Concatenate Objects of Unlike Classes

Save and Load Java Objects to MAT-Files

Data Fields of Java Objects
Access Public and Private Data
Display Public Data Fields of Java Object
Access StaticFieldData

Determine Class of Java Object

Method Information
Display Method Names viiunn...
Display Method Signatures
Display Syntax in Figure Window

3-41

3-43
3-43
3-43
3-43

3-45

3-46
3-46
3-47
3-47

3-49

3-50
3-50
3-50
3-51

Determine What Classes Define a Method 3-52

Java Methods That Affect MATLAB Commands 3-54
Changing the Effect of dispand display 3-54
Changing the Effect ofisequal 3-54
Changing the Effect of double, string, and char 3-55

How MATLAB Handles Undefined Methods 3-56

Avoid Calling Java main Methods in MATLAB 3-57

Pass Datato JavaMethods 3-58
MATLAB Type to Java Type Mapping 3-58
How Array Dimensions Affect Conversion 3-59
Convert Numbers to Integer Arguments 3-60
Pass String Arguments 3-60
PassJava Objects, 3-61
Pass Empty Matrices, Nulls, and Missing Values 3-62
Overloaded Methods 3-62

Handle Data Returned from Java Methods 3-64
Primitive Return Types 3-64
java.lang.Object Return Types 3-65
Functions to Convert Java Objects to MATLAB Types 3-66

Java Heap Memory Preferences 3-70

Read and Write MATLAB MAT-Files in C/C++ and
Fortran

4

Applications to Read and Write MATLAB MAT-Files 4-2

Custom Applications to Access MAT-Files 4-3
Why Write Custom Applications? 4-3
MAT-File Interface Library 4-4
Exchanging Data Files Between Platforms 4-5

MAT-File API Library and Include Files 4-6
MAT-File API Include Files 4-6

ix

MAT-File API Libraries 4-6

Example Files 4-7
What You Need to Build Custom Applications 4-8
Copy External Data into MAT-File Format with Standalone

Programs it 4-9

Overview of matimport.c Example 4-9

Declare Variables for External Data 4-10

Create mxArray Variables 4-10

Create MATLAB Variable Names 4-11

Read External Data into mxArray Data 4-11

Createand Open MAT-File 4-12

Write mxArray DatatoFile 4-12

Clean Up . ..ot e e 4-12

Build the Application 4-12

Createthe MAT-File 4-12

Import Datainto MATLAB 4-13
Create MAT-FileinCor C++ 4-14

Create MAT-FileinC 4-14

Create MAT-Filein C++t 4-14
Read MAT-File in C/C++, 4-16
Create MAT-Filein Fortran 4-18
Read MAT-Filein Fortran 4-19
Work with mxArrays 0. 4-20

Read Structures froma MAT-File 4-20

Read Cell Arrays froma MAT-File 4-21
Table of MAT-File Source Code Files 4-23
Build on macOS and Linux Operating Systems 4-25

Set Run-Time Library Path 4-25

Build Application 4-26
Build on Windows Operating Systems 4-28
Share MAT-File Applications 4-29

X Contents

Calling Functions in C++ Shared Libraries from

S|

MATLAB

System Requirements 5-2
Compiler Dependencies, 5-2

Set Run-Time Library Path 5-2
Import C++ Library Functionality into MATLAB 5-4
Steps to Publish a MATLAB C++ Library Interface 5-6
Define and Publish Interface to C++ Shared Library 5-8
Define and Publish Interface to Header-Only C++ Library .. 5-12
Verify Selected C++ Compiler 5-12
Copy Example Header File 5-12
Generate Definition File 5-12
Define Missing Information for C++ Function getName 5-12
Build Interface and Add to MATLAB Path 5-13
View Contents of Library 5-13
TestFunctions 5-14
Modify Help Text 5-15
Distribute Interface i, 5-15
Display Help for MATLABInterface to C++ Library 5-16
Publish Modified Help Text 5-17
Define MATLAB Interface to C++ Library 5-19
Code Suggestions for User-Defined Parameters 5-19
DIRECTION Parametercouiiveeennnn... 5-19
SHAPE Parameter0 ... 5-20
MLITYPE Parameteru . 5-28
Build Library and Review Contents 5-29

Call Functions in C++ Shared Library 5-30
Limitations to C/C++ Support 5-31
Smart Pointer Semantics 5-32
Limits on Forward Declaration for Functions 5-32
Exception Object 5-32

xi

Troubleshooting C++ Interface Issues 5-33

Why Is a Function Missing from the Definition File? 5-33
MATLAB Did Not Create .mlx Definition File 5-33
Cannot Open .mlx Definition File 5-33
MATLAB to C++ DataType Mapping 5-34
Non-Fixed-Width Integer Types 5-34
String and Character Typescoviiiiunn... 5-35
User-Defined Typest 5-36
Unsupported Data Types, 5-36
Handling Exceptions 5-38
Limitations 5-38
Errors Parsing Header FilesonmacOS 5-39
Build Error Due to Compile-Time Checks 5-41

Calling Functions in C Shared Libraries from MATLAB

6/

Call C Functions in Shared Libraries 6-2
Invoke Library Functions 6-4
View Library Functions 6-5
Load and Unload Library 6-6
Limitations to Shared Library Support 6-7
MATLAB Supports C Library Routines 6-7
Loading C++ Libraries 6-7
Limitations Using printf Function 6-7
BitFields e 6-8
Enum Declarations 6-8
Unions Not Supported 6-9
Compiler Dependencies, 6-9
Limitations Using Pointers 6-9

Functions with Variable Number of Input Arguments Not
Supported 6-10

xii Contents

Limitations Using Structures 6-11

MATLAB Returns Pointers to Structures 6-11
Structure Cannot Contain Pointers to Other Structures 6-11
Requirements for MATLAB Structure Arguments 6-11
Requirements for C struct Field Names 6-11
Loading Library Errors 6-13
No Matching Signature Error 6-14
MATLAB Terminates Unexpectedly When Calling Function in
Shared Library 6-15
Pass Arguments to Shared C Library Functions 6-16
C and MATLAB Equivalent Types 6-16
How MATLAB Displays Function Signatures 6-19
NULL Pointert 6-19
Manually Convert Data Passed to Functions 6-20
Shared Library shrlibsample 6-22
Pass String Arguments Examples 6-23
stringToUpper Function 6-23
Convert MATLAB Character Array to Uppercase 6-23
Pass Structures Examples 6-25
addStructFields and addStructByRef Functions 6-25
Add Values of Fields in Structure 6-26
Preconvert MATLAB Structure Before Adding Values 6-27
Autoconvert Structure Arguments 6-28
Pass Pointer to Structure 6-28
Pass Enumerated Types Examples 6-31
readEnum Function 6-31
Display Enumeration Values 6-32
Pass Pointers Examples 6-33
multDoubleRef Function 6-33
Pass Pointer of Typedouble 6-33
Create Pointer Offset from Existing lib.pointer Object 6-34
Multilevel Pointers 6-35
allocateStruct and deallocateStruct Functions 6-35
Pass Multilevel Pointer 6-36

xiii

Return Array of Strings, 6-36

Pass Arrays Examples 6-38
print2darray Function 6-38
Convert MATLAB Array to C-Style Dimensions 6-38
multDoubleArray Function 6-39
Preserve 3-D MATLABArraycuiiuinnnn. . 6-40

Iterate ThroughanArray 6-42
Create Cell Array from lib.pointer Object 6-42
Perform Pointer Arithmetic on Structure Array 6-43

Pointer Arguments 6-45
Pointer Arguments in C Functions 6-45
Put String into Void Pointer 6-45
Memory Allocation for External Library 6-46

Structure Arguments 6-48
Structure Argument Requirements 6-48
Find Structure Field Names 6-48
Strategies for Passing Structures 6-48

Explore libstruct Objects 6-50

MATLAB Prototype Files 6-51
When to Use Prototype Files 6-51
How to Create Prototype Files 6-51
How to Specify Thunk Files 6-52
Deploy Applications That Use loadlibrary 6-52
loadlibrary in Parallel Computing Environment 6-52
Change Function Signature 6-52
Rename Library Function 6-52
Load Subset of Functions in Library 6-52
Call Function with Variable Number of Arguments 6-53

Intro to MEX-Files

7

MEX Applications 7-3
Writing C Language MEX Functions 7-3

xiv Contents

Writing Fortran MEX Functions

Introducing MEX Files
Using MEX Files
MEX File Placement,
MEX Files on Windows Network Drives
Use Help Files with MEX Functions
MATLAB Datat e
The MATLABAITAY . .. oottt et e et e e
Lifecycle of mXAITAY oot
DataStoragecoi i
MATLAB Data Typesot i i
Sparse Matrices i
UsingData Typest
Testing for Most-Derived Class
Testing for a Category of Types
Another Test for Built-In Types
Build MEX File
Linking Multiple Files
What You Need to Build MEX Files
Change Default Compiler
Windows Systems
Change Linux System Default Compiler
Use Non-Default Compiler on Mac Systems
Do Not Use mex -f optionsfile Syntax
Custom Build with MEX Script Options
Include Files i
Call LAPACK and BLAS Functions
Build matrixMultiply MEX Function Using BLAS Functions . .
Preserve Input Values from Modification

Pass Arguments to Fortran Functions from C/C++ Programs

7-9

7-9
7-10
7-12
7-13
7-14

7-17
7-17
7-18

7-19
7-20
7-21
7-22
7-22
7-23
7-24
7-24

7-25
7-25

7-26
7-26
7-27

7-28

Pass Arguments to Fortran Functions from Fortran Programs

.. 7-29
Modify Function Name on UNIX Systems 7-30
Pass Separate Complex Numbers to Fortran Functions 7-31
Handling Complex Number Input Values 7-31
Handling Complex Number Output Arguments 7-31
Pass Complex Variables — matrixDivideComplex 7-32
Handle Fortran Complex Return Type — dotProductComplex
.. 7-32
Symmetric Indefinite Factorization Using LAPACK — utdu_slv
.. 7-33
MATLAB Support for Interleaved Complex API in MEX
Functions L. 7-35
Separate Complex API and Interleaved Complex API 7-35
Matrix API Changes Supporting Interleaved Complex 7-36
Writing MEX Functions with Interleaved Complex API 7-38
MEX Functions Created in MATLAB R2017b and Earlier 7-38
Upgrade MEX Files to Use Interleaved Complex API 7-40
Check Array Complexity Using mxIsComplex 7-41
Add MX HAS INTERLEAVED COMPLEX to Support Both
Complex Number Representations 7-42
Use Typed Data Access Functions 7-43
Handle Complex mMXATTays . .. oo oo v v v iiiee e eiien . 7-43
Maintain Complexity of mxArray 7-45
Replace Separate Complex Functions 7-46
Calculate Array Data Size with mxGetElementSize 7-46
Consider Replacing To-Be-Phased-Out Functions 7-46
Add Build Information to MEX Help File 7-47
Do I Need to Upgrade My MEX Files to Use Interleaved
Complex API? 7-49
Can I Run Existing MEX Functions? 7-49
Must I Update My Source MEX Files? 7-49
Troubleshooting MEX API Incompatibilities 7-52
FileIsNot AMEXFile 7-52
MEX File Compiled With Incompatible Options 7-52
MEX File Compiled With One API And Linked With Another
.. 7-52

xvi Contents

C++ MEX File Using MATLAB Data API Compiled With

Incompatible Option 7-52
Custom-built MEX File Not Supported In Current Release . . 7-53
MEX File Is Compiled With Outdated Option 7-53
MEX File Calls An Untyped Data Access Function 7-53
MEX File Calls A 32-bit Function 7-53
MEX File Does Not Contain An Entry Point 7-53
MEX File Built In MATLAB Release Not Supported In Current

Release 7-53

Upgrade MEX Files to Use 64-Bit API 7-55
Back Up Filesand Create Tests 7-56
Update Variables 7-56
Update Arguments Used to Call Functions in the 64-Bit API

.. 7-57
Update Variables Used for Array Indices and Sizes 7-57
Analyze Other Variables 7-58
Replace Unsupported Functions 7-59
Test, Debug, and Resolve Differences After Each Refactoring

Iteration 7-59
Resolve -largeArrayDims Build Failures and Warnings 7-60
Execute 64-Bit MEX File and Compare Results with 32-Bit

VETSION . o vt 7-60
Experiment with Large Arrays 7-60

MATLAB Support for 64-Bit Indexing 7-62
What If I Do Not Upgrade? 7-63
Can I Run Existing Binary MEX Files? 7-63
Must [Update Source MEX Files on 64-Bit Platforms? 7-63
Additional Steps to Update Fortran Source Code 7-66
Use Fortran API Header File 7-66
Declare Fortran Pointers 7-66
Require Fortran Type Declarations 7-66
Use Variables in FunctionCalls 7-67
Manage Reduced Fortran Compiler Warnings 7-68

Upgrade MEX Files to Use Graphics Objects 7-69
Replace mexGet and mexSet Functions 7-69
mex Automatically Converts Handle Type 7-71
I Want to Rebuild MEX Source Code Files 7-72
I Do Not Have MEX Source Code File 7-72

xvii

MEX Builds with 64-Bit API by Default 7-74

Platform Compatibility 7-75
Invalid MEX File Errors 7-76
Run MEX File You Receive from Someone Else 7-78
MEX File Dependent Libraries 7-79
Document Build Information in the MEX File 7-80
Version Compatibility 7-82
Getting Help When MEX Fails 7-83
Errors Finding Supported Compiler 7-83
Errors Building MEX Function 7-83
Preview mex Build Commands 7-84
MEX API Is Not Thread Safe 7-85
Compiling MEX File Fails 7-86
Build Example Files 7-86
Use Supported Compiler 7-86
File Not Found on Windows 7-86
Linuxgcc fPICErrorsciinnnnnn. .. 7-86
Compiler Errors in Fortran MEX Files 7-86
Syntax Errors Compiling C/C++ MEX Fileson UNIX 7-87
Symbol mexFunction Unresolved or Not Defined 7-88
MEX File Segmentation Fault 7-89
MEX File Generates Incorrect Results 7-90
Memory Management Issues 7-91
OVEIVIEW . ottt e e e e 7-91
Improperly Destroying an mxArray 7-92
Incorrectly Constructing a Cell or Structure mxArray 7-92
Creating a Temporary mxArray with Improper Data 7-93
Creating Potential Memory Leaks 7-94
Improperly Destroying a Structure 7-94
Destroying Memory in a C++ Class Destructor 7-95

xviii Contents

C/C++ MEX-Files

8

Components of MEX File

8-3

mexFunction Gateway Routine 8-3
Namingthe MEX File 8-3
Required Parameters 8-3
Managing Input and Output Parameters 8-4
Validating Inputs 8-4
Computational Routine 8-5
MATLAB APIs 8-6
Matrix AP . .. 8-6
MEX LIbraryttt e e 8-6
Preprocessor Macrosci it 8-6
UsSer MeSSagesov ittt e e 8-8
ErrorHandling 8-9
Data Flowin MEX Files, 8-10
Showing Data Input and Output 8-10
Gateway Routine Data Flow Diagram 8-11
Creating C++ MEX Functions with C Matrix API 8-13
Creating Your C++ Source File 8-13
Compiling and Linking 8-13
Memory Considerations for Class Destructors 8-14

Use mexPrintf to Print to MATLAB Command Window 8-14

Use C++ Classin C MEXFile 8-15
Handle Fileswith C++ 8-16
CH+Example 8-16
CExample 8-17
Create C Source MEX File 8-18
Tables of MEX Function Source Code Examples 8-24
Getting Started 8-24

C, C++, and Fortran MEX Functions 8-24

C MEX Functions Calling Fortran Subroutines 8-29

xix

XX

Contents

Choosea C++ Compiler
Select Microsoft Visual Studio Compiler
Select MinGW-w64 Compiler

Set Up C/C++ Examples

PassScalarValues
Pass Scalaras Matrixc i
Pass Scalarby Value

Pass Strings e

Handling Strings in C/C++
How MATLAB Represents Strings in MEX Files
Character Encoding and Multibyte Encoding Schemes
Converting MATLAB Character Vector to C-Style String
Converting C-Style String to MATLAB Character Vector
Returning Modified Input String
Memory Management

Pass Multiple Inputs orQutputs
Pass Structures and Cell Arrays in C MEX Files
Create 2-DCell Arrayiiiiiiinn...

FillmxXArTay i e
OptiONS . .ot
Copying Data Directly into an mxArray
PointingtoData i

Prompt UserforInput

Handle ComplexData
Create Source File
Create Gateway Routine and Verify Input and Output

Parameters
Create Output mxArray
Create Computational Routine
Call ConVEC . ..ttt e e
Buildand Test

Handle 8-, 16-, 32-,and 64-BitData

8-31
8-31
8-31

8-33

8-34
8-34
8-35

8-37

8-39
8-39
8-39
8-40
8-40
8-40
8-40

8-42
8-44
8-46
8-48
8-48
8-48
8-48

8-50

8-51

8-51
8-52
8-52
8-53
8-53

8-55

Manipulate Multidimensional Numerical Arrays

Handle Sparse Arrays

Call MATLAB Functions from C/C++ MEX Files

Debug on Microsoft Windows Platforms
Notes on Debugging

Debug on Linux Platforms

Debug on Mac Platforms
UsingXcode

UsingLLDB

Handling Large mxArrays
Using the 64-Bit APT
Example
Caution Using Negative Values

Building Cross-Platform Applications

Typed DataAccess

Persistent mxArrays

Automatic Cleanup of Temporary Arrays
Example

Handling Large File I/O
Prerequisites to Using 64-BitI/O

Specifying Constant Literal Values
OpeningaFile

Printing Formatted Messages

Replacing fseek and ftell with 64-Bit Functions

Determining the Size of an Open File

Determining the Size of a Closed File

MinGW-w64 Compiler
Building yprime.c Example

MinGW Installation Folder Cannot Contain Space

Updating MEX Files to Use MinGW Compiler

8-56

8-58

8-60

8-61
8-62

8-63

8-65
8-65
8-68

8-71
8-71
8-72
8-73
8-73

8-74

8-76

8-78
8-78

8-80
8-80
8-82
8-82
8-83
8-83
8-84
8-85

8-86
8-86
8-86
8-87

xxi

xxii

Contents

Troubleshooting and Limitations Compiling C/C++ MEX Files

with MinGW-w64 8-88

Do Not Link to Library Files Compiled with Non-MinGW

Compilers 8-88
MinGW Installation Folder Cannot Contain Space 8-88
MEX Command Does not Choose MinGW 8-88
Manually Configure MinGW for MATLAB 8-89
MinGW Behaves Similarly to gcc/g++ on Linux 8-89
Potential Memory Leak Inside C++ MEX Files on Using MEX

Exceptions i 8-89
Unhandled Explicit Exceptions in C++ MEX Files Unexpectedly

Terminate MATLAB 8-90

C++ MEX Applications

9

C++ MEX Functions

Create a C++ MEX Source File

C++ MEXAPL ..
Basic Design of C++ MEX Functions
Call MEX Function from MATLAB
Examples of C++ MEX Functions

> povo0
WWINNDN

Create Source File
Add Required Header Files
Using Convenience Definitions
Define MexFunctionClass
Defineoperator()o
Add Member Function to Check Arguments
Implement Computation
SetupandBuild
CallMEXFunction

QOO0 LOLLOLOoOoOY

Codussuaah

Build C++ MEX Programs 9-10

Supported Compilers 9-10
Build .cpp File with mex Command 9-10
MEX Include Files 9-10
File Extensionsu .. 9-11

Test Your Build Environment 9-12

C++ MEXAPI 9-14

matlab::mex::Function 9-14
matlab::mex::ArgumentList 9-14
C++EngineAPI e 9-15
matlab::engine::MATLABEngine::feval 9-16
matlab::engine:: MATLABEngine::fevalAsync 9-18
matlab::engine::MATLABEngine::eval 9-20
matlab::engine:: MATLABEngine::evalAsync 9-21
matlab::engine:: MATLABEngine::getVariable 9-21
matlab::engine:: MATLABEngine::getVariableAsync 9-22
matlab::engine::MATLABEngine::setVariable 9-23
matlab::engine:: MATLABEngine::setVariableAsync 9-24
matlab::engine:: MATLABEngine::getProperty 9-25
matlab::engine::MATLABEngine::getPropertyAsync 9-26
matlab::engine:: MATLABEngine::setProperty 9-26
matlab::engine::MATLABEngine::setPropertyAsync 9-27
Exception Classescoiiiiinniinnennn. 9-28
Structure of C++ MEX Function 9-30
MEX Function Design, 9-30
Header Filesot 9-30
NameSPACES . o v vttt e e 9-30
EntryPoint 9-30
Passing Arguments 9-31
Class Constructor and Destructor 9-32
Managing External Resources from MEX Functions 9-34
ReadingaTextFile 9-34
Handling Inputs and Qutputs 9-37
Argument Validation 9-37
ArgumentList Iterators 9-38
Support Variable Number of Arguments 9-39
Data Access in Typed, Cell, and Structure Arrays 9-41
Shared Copies it 9-41
Modify Cell Array in MEX Function 9-42
Modify Structure in MEX Function 9-44
Data Types for Passing MEX FunctionData 9-48
TypPed ATTaysot 9-48
Character ATraysccuiiiiin i 9-48
String ATTays oot 9-49

xxiii

xxiv

Contents

Cell ATTays . . oot e e
Structure Arrayst
MATLAB Objectso

Call MATLAB Functions from MEX Functions
SingleOutput
Multiple OQutputs

Catch Exceptions in MEX Function
Execute MATLAB Statements from MEX Function

Set and Get MATLAB Variables from MEX
Get Variable from MATLAB Workspace
Put Variable in MATLAB Workspace
Set and Get Variable Example Code

MATLAB Objects in MEX Functions
GetProperty Value00,
Get Property Value from Object Array
SetProperty Value
Set Property Value in Object Array
Object Property Copy-On-Write Behavior
Modify Property and Return Object
Only Modified Property Causes Copy
Handle Objects

Avoid Copies of Arrays in MEX Functions
Input Array Not Modified
Input Array Modified

Displaying Output in MATLAB Command Window

Call MATLAB from Separate Threads in MEX Function
Communicating with MATLAB from Separate Threads
Example to Update the Displayof Text

Out-of-Process Execution of C++ MEX Functions
How to Run Out of Process,
Running arrayProduct MEX Function Out of Process
Process Lifecycle
Getting Information About the MEX Host Process
Always Run Out of Process

Debugging Out-of-Process MEX Functions

10

Components of Fortran MEX File
mexFunction Gateway Routine
Namingthe MEX File
Difference Between .fand .FFiles
Required Parameters,
Managing Input and Output Parameters
Validating Inputs
Computational Routine

MATLAB Fortran API Libraries
Matrix Library i
MEX Library e
Preprocessor Macrost
Using the Fortran %val Construct

Data Flow in Fortran MEX Files
Showing Data Input and Output
Gateway Routine Data Flow Diagram

User MeSSagesvi ittt e

ErrorHandling

Build Fortran MEX File

Create Fortran Source MEX File

Set Up Fortran Examples

Pass ScalarValues

Pass Strings

Pass Arraysof Strings

10-13

10-14

10-19

10-20

10-21

10-22

xxvi

Pass Matrices

Pass Integers

Pass Multiple InputsorOQutputs

Dynamically Allocate Memory

Handle Sparse Matrices .

Call MATLAB Functions from Fortran MEX Files

Debug Fortran MEX Files

Notes on Debugging . .

Debugging on Microsoft Windows Platforms
Debugging on Linux Platforms

Handling Large mxArrays

Using the 64-Bit API . .

Caution Using Negative Values
Building Cross-Platform Applications

Memory Management . . .

MATLAB Supports Fortran 77

Handle Complex Fortran Data

Build and Test

10-24
10-25
10-26
10-27
10-28
10-30
10-30
10-30
10-30
10-33
10-33
10-35
10-35
10-36
10-37

10-38
10-39

Calling MATLAB Engine from C/C++ and Fortran

11|

Contents

Programs

Engine Applications 11-2
Introducing MATLAB Engine API for C and Fortran 11-4
Communicating with MATLAB Software 11-5
Callbacks in Applications 11-6

Call MATLAB Functions from C Applications 11-7

Call MATLAB Functions from Fortran Applications 11-9
Attach to Existing MATLAB Sessions 11-11
Build Windows Engine Application 11-13
Run Windows Engine Application 11-14
Set Run-Time Library Path on Windows Systems 11-15
Change Path Each Time You Run the Application 11-15
Permanently Change Path 11-15
Troubleshooting 11-16
Register MATLABasaCOM Server 11-17
Build Linux Engine Application 11-18
Build macOS Engine Application 11-19
Run Linux Engine Application 11-20
Run macOS Engine Application 11-21
Set Run-Time Library Path on Linux Systems 11-22
CShell 11-22
Bourne Shell 11-22
Set Run-Time Library Path on macOS Systems 11-23
CShell 11-23
Bourne Shell 11-23
Build Engine Applications withIDE 11-25
Configuringthe IDE 11-25
Engine Include Files 11-25
Engine Libraries 11-26
Library Files Required by libeng 11-26
Can't Start MATLAB Engine 11-28
Multithreaded Applications 11-29

xxvii

xxviii

User Input Not Supported 11-30

Getting Started 11-31
Debug MATLAB Function Called by C Engine 11-32
Debug Engine Application on Windows 11-32
Debug Engine Application Attached to Existing MATLAB Session
... 11-32

Engine API for Java

12

MATIAB Engine APIforJava 12-2
Build Java Engine Programs 12-3
General Requirements 12-3
Compile and Run Java Code on Windows 12-4
Compile and Run Java Code onmacOS 12-4
Compile and Run Java Code on Linux 12-5
Java Example Source Code 12-7
Java Engine API Summary 12-8
com.mathworks Packages 12-8
com.mathworks.engine.MatlabEngine Methods 12-9
java.util.concurrent.Future Interface 12-10
Java Data Type Conversions 12-11
Pass Java Data to MATLAB 12-11
Pass MATLABDatatoJava 12-12
Start and Close MATLAB Session from Java 12-14
Start MATLAB Synchronously 12-14
Start MATLAB Asynchronously 12-14
Start Engine with Startup Options 12-15
Close MATLAB Engine Sessionc.vvv... 12-15
Connect Java to Running MATLAB Session 12-17
Find and Connect to MATLAB 12-17
Connect to MATLAB Synchronously 12-17

Contents

Connect to MATLAB Asynchronously
Specify Name of Shared Session

Execute MATLAB Functions

fromJava

Calling MATLAB Functionsccoiiiinnnnn.
Execute Function with Single Returned Argument
Execute Function with Multiple Returned Arguments

When to Specify Number

of Output Arguments

Evaluate MATLAB Statements from Java
Evaluating MATLAB Statements
Evaluate Mathematical Function in MATIAB

Pass Variables from Java to MATLAB

Ways to Pass Variables . .
Pass Function Arguments

Put Variables in the MATLAB Workspace

Pass Variables from MATIABtoJava
Coordinate Conversioncuiuu....

Using Complex VariablesinJava
Complex Variablesin MATLAB
Get Complex Variables from MATLAB

Pass Complex Variable to

MATLAB Function

Using MATLAB StructuresinjJava

MATLAB Structures

Pass Struct to MATLAB Function

Get Struct from MATLAB

Pass Java CellStrto MATLABccovuunnn.

MATLAB Cell Arrays . . .
Create CellStr

Using MATLAB Handle ObjectsinJava

MATLAB Handle Objects
Java HandleObject Class

Set Graphics Object Properties from Java

Redirect MATLAB Command Window Output to Java
Output to MATLAB Command Window

Redirect MATLAB Output

12-18
12-18

12-20
12-20
12-20
12-21
12-21

12-23
12-23
12-23

12-25
12-25
12-25
12-26

12-27
12-27

12-28
12-28
12-28
12-29

12-31
12-31
12-31
12-32

12-34
12-34
12-34

12-36
12-36
12-36
12-36

12-38

12-38
12-38

xxix

XXX

Redirect MATLAB Error MessagestoJava 12-39

Run Simulink Simulation from Java 12-40
MATLAB Command to Run Simulation 12-40
Run vdp Model fromJava 12-40
MATLAB Engine API Exceptions 12-44
com.mathworks.engine.EngineException 12-44
com.mathworks.engine.UnsupportedTypeException 12-44
com.mathworks.engine.MatlabExecutionException 12-44
com.mathworks.engine.MatlabSyntaxException 12-44
Pass Java Array Arguments to MATIAB 12-46
2-D Array Arguments for MATLAB Functions 12-46
Multidimensional ATrayscoviiiiii 12-46
Incorrect JavaDataTypes 12-48
Java String to MATLAB Character Vector 12-48
Setting Graphics Object Properties from Java 12-49
Java Integer to MATLAB double 12-49
Incorrect Number of Output Arguments 12-50

MATLAB Engine for Python Topics

13|

Contents

Get Started with MATLAB Engine API for Python 13-2
Install MATLAB Engine API for Python 13-5
Install MATLAB Engine API for Python in Nondefault Locations
.. 13-7
Build or Install in Nondefault Folders 13-7
Install Engine in Your Home Folder 13-8
Start and Stop MATLAB Engine for Python 13-9
Start MATLAB Engine for Python 13-9
Run Multiple Engines 13-9
StopEngine 13-9
Start Engine with Startup Options 13-10

Start Engine Asynchronously

Connect Python to Running MATLAB Session
Connect to Shared MATLAB Session

Connect Asynchronously to Shared

MATLAB Session

Connect to Multiple Shared MATLAB Sessions
Start Shared MATLAB Sessions with Startup Options

Call MATLAB Functions from Python

Return Output Argument from MATLAB Function

Return Multiple Output Arguments

Return No Output Arguments from
Stop Execution of Function

from MATLAB Function

MATLAB Function

Call MATLAB Functions Asynchronously from Python

Call User Scripts and Functions from Python

Redirect Standard Output and Error to Python

Use MATLAB Handle Objects in Python

Use MATLAB Engine Workspace in Python

Pass Data to MATLAB from Python .

Python Type to MATLAB Scalar Type Mapping
Python Container to MATLAB Array Type Mapping

Unsupported Python Types

Handle Data Returned from MATLAB to Python
MATLAB Scalar Type to Python Type Mapping
MATLAB Array Type to Python Type Mapping

Unsupported MATLAB Types

MATLAB Arrays as Python Variables
Create MATLAB Arrays in Python .

MATLAB Array Attributes and Methods in Python
Multidimensional MATLAB Arrays in Python
Index Into MATLAB Arrays in Python

Slice MATLAB Arrays in Python . .
Reshape MATLAB Arrays in Python

13-10

13-11
13-11
13-12
13-12
13-13

13-14
13-14

13-14
13-15
13-15

13-16

13-17

13-19

13-20

13-22

13-23
13-23
13-24
13-24

13-25
13-25
13-26
13-27

13-28
13-28
13-30
13-30
13-30
13-31
13-32

xxxi

Use MATLAB ArraysinPython 13-34

Sort and Plot MATLAB Data from Python 13-36
Get Help for MATLAB Functions from Python 13-40
How to Find MATLABHelp 13-40
Open MATLAB Help Browser from Python 13-40
Display MATLAB Help at Python Prompt 13-41
Default Numeric Types in MATLAB and Python 13-42
System Requirements for MATLAB Engine API for Python
... 13-44
Python Version Support 13-44
Download 64-Bit Versions of Python and MATLAB 13-45
Requirements for Building Python from Source 13-45
Limitations to MATLAB Engine API for Python 13-46
Troubleshoot MATLAB Errors in Python 13-47
MATLAB ErrorsinPython 13-47
MatlabExecutionError: Undefined Function 13-47
SyntaxError: Expression Not Valid Target 13-48
SyntaxError: Invalid Syntax 13-48
Cannot Find MATLAB Session in Python 13-49

Engine API for C++

14|

Introduction to Engine API forC++ 14-2
Getting Started 14-2
Basic Elements of C++ Engine Programs 14-2

C++Engine API 14-5
Utility Functions 14-5
ClasSeS v v it e 14-6
MATLABEngine Member Functions 14-6
Exception Classest 14-7
Data Size Limitations 14-7
Using Engine in Multiple-Thread Environment 14-8

xxxii Contents

Build C++ Engine Programs
Supported Compilers,
Build .cpp File with mex Command
General Requirements
Engine Include Files
Runtime Environment

Test Your Build Environment

Start MATLAB Sessions from C++
Start MATLAB Session Synchronously
Start MATLAB Session Asynchronously
Start MATLAB with Startup Options

Connect C++ to Running MATLAB Session
Connect to Shared MATLAB
Connect to Shared MATLAB Asynchronously
Specify Name of Shared Session
Find and Connect to Named Shared Session

Call MATLAB Functions from C++
Call Function with Single Returned Argument
Call Function with Name/Value Arguments
Call Function Asynchronously
Call Function with Multiple Returned Arguments
Call Function with Native C++ Types
Control Number of OQutputs

Evaluate MATLAB Statements from C++
Evaluation of MATLAB Statements
Evaluate Mathematical Function in MATLAB

Pass Variables from C++ to MATLAB
Ways to Pass Variables
Put Variables in MATLAB Base Workspace

Pass Variables from MATLABtoC++
Bring Result of MATLAB Calculation IntoC++
Get MATLAB Objects and Access Properties
Set Property on MATLAB Object

Redirect MATLAB Command Window Output to C++
Redirect ScreenOutput

xxxiii

xXxxiv

Redirect Error Qutput 14-39

Create Cell Arrays from C++ 14-41
Put Cell Array in MATLAB Workspace 14-41
Access Elements of Cell Array 14-42
Modify Elements of Cell Array 14-42

Create Structure Arrays from C++ 14-46
Create Structure Array and Send to MATLAB 14-46
Get Structure from MATLAB 14-47
Access Struct ArrayData 14-47

Pass Enumerations to MATLAB From C++ 14-50

Pass Sparse Arrays to MATLAB From C++ 14-53

Run Simulink Simulation from C++ 14-55
MATLAB Command to Run Simulation 14-55
Simulink vdp Model from C++ 14-55
MATLAB Code to Run Simulation 14-56
C++ Code to Run Simulation 14-57

Convert C++ Engine Application to MATLAB Compiler SDK
Application 14-59
Applications to Call Sierpinski Function 14-59

Using .NET Libraries from MATLAB

15

Contents

Read Cell Arrays of Excel Spreadsheet Data 15-4
Access a Simple NETClass 15-6
System.DateTime Example 15-6
Create .NET Object From Constructor 15-7
View Information About .NET Object 15-7
Introduction to NET Data Types 15-9
Load a Global .NET Assembly 15-12
Work with Microsoft Excel Spreadsheets Using .NET 15-13

Work with Microsoft Word Documents Using .NET 15-15

Assembly is Library of NET Classes 15-16
Limitations to .NET Support 15-17
System Requirements for Using MATLAB Interface to .NET
... 15-19
MATLAB Configuration File 15-19
Using .NET from MATIAB 15-20
Benefits of the MATLAB .NET Interface 15-20
Why Use the MATLAB .NET Interface? 15-20
NET Assembly Integration Using MATLAB Compiler SDK .. 15-21
To Learn More About the .NET Framework 15-21
Usinga .NET Object 15-22
Creatinga .NET Object 15-22
What Classes Are in a .NET Assembly? 15-22
Using the delete Function on a .NET Object 15-23
Build a .NET Application for MATLAB Examples 15-24
Troubleshooting Security Policy Settings from Network Drives
... 15-25
NET Terminology 15-26
.NET Framework System Namespace 15-26
Reference Type Versus Value Type 15-26
Simplify NET Class Names 15-27
Use import in MATLAB Functions 15-28
NestedClasses, 15-29
Handle .NET Exceptions 15-30
Pass Numeric Arguments 15-31
Call .NET Methods with Numeric Arguments 15-31
Use .NET Numeric Typesin MATLAB 15-31

XXXVi

Contents

Pass System.String Arguments

Call .NET Methods with System.String Arguments

Use System.String in MATLAB

Pass System.Enum Arguments

Call .NET Methods with System.Enum Arguments

Use System.Enum in MATLAB
Pass System.Nullable Arguments

Pass Cell Arrays of NET Data
Example of Cell Arrays of .NET Data . . .

Create a Cell Array for Each System.Object

Create MATLAB Variables from the .NET

Data

Call MATLAB Functions with MATLAB Variables

Pass Jagged Arrays

Create System.Double .NET Jagged Array

Call .NET Method with System.String Jagged Array Arguments

Call .NET Method with Multidimensional
Arguments

Convert Nested System.Object Arrays . . .

Pass Data to .NET Objects
Pass Primitive NET Types
Pass Cell Arrays
Pass Nonprimitive .NET Objects
Pass MATLAB String and Character Data
Pass System.Nullable Type
Pass NULL Values
Unsupported MATLAB Types

Choosing Method Signatures

Jagged Array

Example — Choosing a Method Signature

PassArrays
Pass MATLAB Arrays as Jagged Arrays .

Handle Data Returned from .NET Objects
.NET Type to MATLAB Type Mapping . .
How MATLAB Handles System.String . .

How MATLAB Handles System. ComObject

How MATLAB Handles System.Nullable

15-32
15-32
15-32

15-34
15-34
15-35

15-36

15-40
15-40
15-41
15-41
15-41

15-43
15-43

15-43

15-45

15-47

15-49
15-49
15-50
15-51
15-51
15-52
15-52
15-52
15-52
15-53
15-55
15-55

15-57
15-57
15-58
15-59
15-60

How MATLAB Handles dynamic Type
How MATLAB Handles Jagged Arrays

Use Arrays with .NET Applications
Passing MATLAB Arraysto .NET
Accessing .NET Array Elements in MATLAB
Converting .NET Jagged Arrays to MATLAB Arrays

Convert .NET Arrays to Cell Arrays
Convert Nested System.Object Arrays
cell Function Syntax for System.Object[,] Arrays

Limitations to Support of .NET Arrays

Set Static .NET Properties
Set System.Environment.CurrentDirectory Static Property

Do Not Use ClassName.PropertyName Syntax for Static
Properties

Using .NET Properties
How MATLAB Represents .NET Properties
How MATLAB Maps C# Property and Field Access Modifiers

MATLAB Does Not Display Protected Properties

Work with .NET Methods Having Multiple Signatures
Display Function Signature Example

Call .NET Methods With out Keyword
Call .NET Methods With ref Keyword
Call .NET Methods With params Keyword
Call .NET Methods with Optional Arguments
Skip Optional Arguments
Call Overloaded Methods
Calling NET Methods

Calling Object Methods
Getting Method Information

15-61
15-61

15-62
15-62
15-62
15-63
15-64
15-64
15-65
15-67
15-68
15-68
15-69

15-70
15-70

15-70

15-72

15-73
15-74

15-75
15-77
15-79
15-81
15-81
15-82
15-84

15-84
15-84

xxxvii

xxxviii

Contents

C# Method Access Modifiers 15-84

VB.NET Method Access Modifiers 15-85
Reading Method Signatures 15-85
Calling .NET Methods with Optional Arguments 15-87
Skipping Optional Arguments 15-87
Determining Which Overloaded Method Is Invoked 15-87
Support for ByRef Attribute in VB.NET 15-87
Calling .NET Extension Methods 15-88
Call .NET Properties That Take an Argument 15-89
How MATLAB Represents .NET Operators 15-91
Limitations to Support of .NET Methods 15-92
Displaying Generic Methods 15-92
Overloading MATLAB Functions 15-92
Calling Overloaded Static Methods 15-92
Use NET Events in MATLAB 15-93
Monitor Changes to . TXTFile 15-93
Monitor Changes to Windows Form ComboBox 15-93
Call .NET Delegates in MATLAB 15-96
Declare a Delegate ina C# Assembly 15-96
Load the Assembly Containing the Delegate into MATLAB . 15-96
Select a MATLAB Function 15-96
Create an Instance of the Delegate in MATLAB 15-96
Invoke the Delegate Instance in MATLAB 15-97
Create Delegates from .NET Object Methods 15-98
Create Delegate Instances Bound to .NET Methods 15-100
Example — Create a Delegate Instance Associated with a .NET
Object Instance Method 15-100
Example — Create a Delegate Instance Associated with a
Static NET Method 15-101
.NET Delegates With out and ref Type Arguments 15-102
Combine and Remove .NET Delegates 15-103

.NET Delegates

Calling .NET Methods Asynchronously

How MATLAB Handles Asynchronous Method Calls in .NET

Calling a Method Asynchronously Using a Callback When an

Asynchronous Call Finishes

Calling a Method Asynchronously Without a Callback
Using EndInvoke With out and ref Type Arguments
Using Polling to Detect When Asynchronous Call Finishes

Limitations to Support of .NET Events

MATLAB Support of Standard Signature of an Event Handler

Delegate i

Limitations to Support of .NET Delegates . .

Use Bit Flags with .NET Enumerations

How MATLAB Supports Bit-Wise Operations on System.Enum

Creating .NET Enumeration Bit Flags

Removing a Flag from a Variable

Replacing a Flagina Variable

Testing for Membership

Read Special System Folder Path

Default Methods for an Enumeration
NetDocEnum Example Assembly
Work with Members of a .NET Enumeration

Refer to a .NET Enumeration Member
Using the Implicit Constructor

Display .NET Enumeration Members as Character Vectors

Convert .NET Enumeration Values to Type Double

Iterate Through a .NET Enumeration
Information About System.Enum Methods

15-105
15-106
15-106
15-106
15-108
15-109
15-109
15-110
15-110
15-111
15-112
15-112
15-112
15-113
15-114
15-114
15-116
15-118
15-120
15-121
15-123
15-123
15-125
15-126

15-127
15-127

Xxxix

x1

Contents

Display Enumeration Member Names

Use .NET Enumerations to Test for Conditions

Using Switch Statements .

Using Relational Operations

Underlying Enumeration Values

Limitations to Support of .NET Enumerations

Create .NET Collections

Convert .NET Collections to MATLAB Arrays

Create .NET Arrays of Generic Type

Display .NET Generic Methods Using Reflection
showGenericMethods Function
Display Generic MethodsinaClass
Display Generic Methods in a Generic Class

.NET Generic Classes
Accessing Items in .NET Coll

Call .NET Generic Methods .

ections

Using the NetDocGeneric Example
Invoke Generic Class Member Function
Invoke Static Generic Functions
Invoke Static Generic Functions of a Generic Class
Invoke Generic Functions of a Generic Class

15-129
15-129
15-129

15-131
15-132
15-133
15-135
15-136
15-137
15-137
15-138
15-139
15-140
15-141
15-142
15-142
15-142
15-143

15-143
15-144

Using COM Objects from MATLAB

16|

MATLAB COM Integration . .
Concepts and Terminology
COM Objects, Clients, and

Interfaces

The MATLAB COM Client

Servers

The MATLAB COM Automation Server 16-3

Registering Controls and Servers 16-5
Accessing COM Controls Created with NET 16-5
Verifying the Registration 16-5

Getting Started withCOM 16-7
Creating an Instance of a COM Object 16-7
Getting Information About a Particular COM Control 16-7
Getting an Object'sProgID 16-8
Registering a Custom Control 16-8

Read Spreadsheet Data Using Excel as Automation Server

... 16-10
Techniques Demonstrated 16-10
Create Excel Automation Server 16-10
Manipulate Data in MATLAB Workspace 16-11
Create Plotter Interface 16-12
Insert MATLAB Graphs into Excel Spreadsheet 16-14
Run Example 16-15

Supported Client/Server Configurations 16-17
Introduction e 16-17
MATLAB Client and In-Process Server 16-17
MATLAB Client and Out-of-Process Server 16-18
COM Implementations Supported by MATLAB Software ... 16-19
Client Application and MATLAB Automation Server 16-19
Client Application and MATLAB Engine Server 16-20

MATLAB COM Client Support

17|

Create COM Objects 17-3
Creating the Server Process — An Overview 17-3
Creating an ActiveX Control 17-4
Creatinga COM Serverc.coviiiiinnnn.nn 17-8

Handle COM Datain MATLABcuuunn. 17-11
Passing Data to COM Objects 17-11
Handling Data from COM Objects 17-13

xli

xlii

Contents

Unsupported TYPES . . . oo vt e e
Passing MATLAB Data to ActiveX Objects
Passing MATLAB SAFEARRAY to COM Object
Reading SAFEARRAY from COM Objects in MATLAB
Applications
Displaying MATLAB Syntax for COM Objects

COM Object Properties
MATLAB Functions for Object Properties
Work with Multiple Objects
Enumerated Values for Properties

Property Inspector
Custom Properties

Properties That Take Arguments

COM Methods

Getting Method Information
Calling Object Methods
Specifying Enumerated Parameters
Skipping Optional Input Arguments

Returning Multiple
COM Events

COM Event Handlers
Overview of Event
Arguments Passed
Event Structure . .

Output Arguments

Handling
toEventHandlers

COM Object Interfaces
IUnknown and IDispatch Interfaces

Save and Delete COM

Objects

Functions for Saving and Restoring COM Objects

Releasing COM Int

erfaces and Objects

MATILAB Application as DCOM Client

Explore COM Objects

Exploring Properties

Exploring Methods
Exploring Events .

Exploring Interfaces

Identifying Objects and Interfaces 17-38

Change Row Height in Range of Spreadsheet Cells 17-40
Write Data to Excel Spreadsheet Using ActiveX 17-43
Change Cursor in Spreadsheet 17-45
Insert Spreadsheet After First Sheet 17-47
Redraw Circle in mwsamp Control 17-49
Connect to Existing Excel Application 17-52
Display Message for Workbook OnClose Event 17-53
Combine Event Handlers as MATLAB Local Functions 17-54
MATLAB Sample ActiveX Control mwsamp 17-55
Display Event Messages from mwsamp Control 17-57
Add Position Property to mwsamp Control 17-60
Save mwsamp2 COM Control 17-61
Deploy ActiveX Controls Requiring Run-Time Licenses 17-62

Create Function to Build Control 17-62

Build Control and License File 17-62

Build Executable 17-63

Deploy Files 17-63
Microsoft Forms 2.0 Controls 17-64

Affected Controls i 17-64

Replacement Controls 17-64
COM Collections, 17-66
MATLAB COM Support Limitations 17-67

Interpreting Argument Callouts in COM Error Messages . . 17-68

xliii

xliv

MATLAB COM Automation Server Support

18|

Contents

Register MATLAB as Automation Server 18-2
When to Register MATLAB 18-2
Register from System Prompt 18-2
Register from MATLAB Command Prompt 18-3

MATLAB COM Automation Server Interface 18-4
COM Server Types . .o oot 18-4
Programmatic Identifiers 18-4
Shared and Dedicated Servers 18-5
In-Process and Out-of-Process Servers 18-5

Create MATLAB Server ciuvei.. 18-7
Getting Started 18-7
Get or Set the Status of a MATLAB Automation Server 18-8

Connect to Existing MATLAB Server 18-9
Using Visual Basic NET Code 18-9

VI DATEDataType 0. 18-10

Data Types For Visual Basic .NET Clients 18-11

Visible Property 18-12

Manually Create Automation Server 18-13

Start MATLAB as Automation Server in Desktop Mode 18-14

Call MATLAB Function from Visual Basic .NET Client 18-15

Pass Complex Data to MATLAB from C# Client 18-16

Call MATLAB Function from C# Client 18-18

View MATLAB Functions from Visual Basic .NET Object
Browser e 18-20

Waiting for MATLAB Application to Complete 18-21

Conversion of MATLAB Types to COM Types 18-22

VariantData 18-22
SAFEARRAY Dataoviiine i, 18-23
Unsupported TYPES . . . oo vt e e 18-23
Conversion of COM Types to MATLAB Types 18-24

Using Web Services with MATLAB

19]

Display Streamed Data in Figure Window 19-2
PricesStreamer Class, 19-2
Map Data to MATLAB uitable Object 19-5
Display Data in JSON Format 19-6
Terminate Data Stream 19-6
Call PricesStreamer, 19-7
Display JPEG Images Streamed from IP Camera 19-8
CameraPlayer Classc.viiiiiiinnennnnn. 19-8
Call CameraPlayeroiiineinnn .. 19-10
Send Multipart Form Messages 19-12
Send and Receive HTTP Messages 19-14
What Is the HTTP Interface? 19-18
Manage Cookies 19-19
HTTP Data Type Conversion 19-21
Converting Data in Request Messages 19-21
Converting Data in Response Messages 19-26
Supported Image Data Subtypes 19-28
Display Progress Monitor for HITP Message 19-30
SetUpWSDLTools 19-34
DisplayaWorldMap 19-35

xlv

xlvi

Using WSDL Web Service with MATLAB 19-40

What Are Web Services in MATLAB? 19-40
What Are WSDL Documents? 19-40
What You Need to Use WSDL with MATLAB 19-41
Access Services That Use WSDL Documents 19-43
ErrorHandling 19-45
Considerations Using Web Services 19-45
Error Handling with try/catch Statements 19-45
Use a Local Copy of the WSDL Document 19-45
Java Errors Accessing Service oo 19-46
Anonymous Types Not Supported 19-46
XML-MATLAB Data Type Conversion 19-47
Limitations to WSDL Document Support 19-49
Unsupported WSDL Documents 19-49
Documents Must Conform to Wrapper Style 19-51
SOAP Header Fields Not Supported 19-52

Python Interface Topics

20

Contents

Install Supported Python Implementation 20-3
Call Python from MATLABt 20-4
Call User-Defined Python Module 20-7
Use Python Numeric Types in MATLAB 20-9
Call Python Methods with Numeric Arguments 20-10
Default Numeric Types 20-12
Use Python array Types in MATLAB 20-13
Pass MATLAB Character Vector to Python Method 20-14

Use Python str Type in MATLAB 20-15

Pass MATLAB Backslash Control Character 20-17
Create Python list Variable 20-19
Use Python list Type in MATLAB 20-20
Use Python List of Numeric Types in MATLAB 20-22
Pass Cell Array as Python Sequence Type 20-24
Read Element of Nested list Type 20-26
Create Python tuple Variable 20-27
Create Singleton Python tuple Variable 20-28
Create Python dict Variable 20-29
Pass dict Argument to Python Method 20-30
Use Python dict Type in MATLAB 20-31
Convert Python dict Type to MATLAB Structure 20-33
Pass Keyword Arguments 20-34
Pass Python Function to Python map Function 20-35
Index into Python String 20-36
Index into Python List 20-37
Index into Python Tuple 20-39
Index into Python dict 20-40
Use Python List as ValuesinforLoop 20-42
Display Stepped Range of Python Elements 20-43

xlvii

Access Elements in Python Container Types 20-44

Sequence Typeso vttt e 20-44
Mapping Types oo e 20-45
Size and Dimensionsc0 i 20-45
Array Support 20-46
Use Zero-Based Indexing for Python Functions 20-46
View Python Numeric Values 20-47
Why Do I See Properties When I Display a Number? 20-47
What Is the L Character Attached to a Number? 20-47
Call Methods on Python Variables 20-49
Reload Modified User-Defined Python Module 20-51
System and Configuration Requirements 20-53
Python Version Support 20-53
Set Python Version on Windows Platform 20-53
Set Python Version on Mac and Linux Platforms 20-54
Download 64-Bit Version of Python on Windows Platforms . 20-54
Requirements for Building Python Executable 20-54
Create a Python Object 20-55
Pass DatatoPython 20-58
MATLAB Type to Python Type Mapping 20-58
MATLAB Vector to Python Mapping 20-59
Passing Matrices and Multidimensional Arrays 20-59

Troubleshooting Multidimensional Array Argument Errors

... 20-63
Unsupported MATLABTypesou... 20-64
Handle Data Returned from Python 20-65

Automatic Python Type to MATLAB Type Mapping 20-65
Explicit Type Conversionscuuuunen. 20-65
How MATLAB Represents Python Operators 20-67
Execute Callable Python Object 20-69

xlviii Contents

Understanding Python and MATLAB import Commands ... 20-70

Do Not Type import pythonmodule 20-70
Use MATLAB import to Shorten Class or Function Names .. 20-70
List, Tuple, and Dictionary Types 20-72
Limitations to Python Support 20-73
Limitations to Indexing into Python Objects 20-74
Undefined variable "py" or function "py.command" 20-75
Python NotInstalled 20-75
64-bit/32-bit Versions of Python on Windows Platforms 20-75
MATLAB Cannot Find Python 20-75
Error in User-Defined Python Module 20-76
Python Module Not on Python Search Path 20-76
Module Name Conflicts 20-76
Python Tries to Execute command in Wrong Module 20-77
Help for Python Functions 20-78
Handle Python Exceptions 20-80
Troubleshooting Error Messages 20-81
Python Error: Python class: message 20-81
Python Module Errors 20-81
Errors Converting PythonData 20-82
Using Python Data in MATLAB 20-83
Call Python eval Function 20-84
Precedence Order of Methods and Functions 20-86
Python Function Arguments 20-87
Positional Arguments 20-87
Keyword Arguments, 20-87
Optional Arguments, 20-88

xlix

1

Contents

System Commands

21

22

23

Shell Escape Function Example 21-2
Run External Commands, Scripts, and Programs 21-3
Shell Escape Function 21-3
Return Resultsand Status 21-3
Specify Environment Variables 21-4

Run UNIX Programs off System Path 21-4

Run AppleScriptonmacOS 21-5
Change Environment Variable for Shell Command 21-7
Settings

Access and Modify Settings 22-2
Use Settings ... i 22-2
Settings Structure 22-3
Settings and Preferences 22-5
Serial Port I/0

Capabilities and Supported Interfaces and Platforms 23-2
What Is the MATLAB Serial Port Interface? 23-2
Supported Serial Port Interface Standards 23-3
Supported Platforms, 23-3
Using the Examples with Your Device 23-3

Find Available Serial Ports Using the seriallist Function 23-3
Overview of the Serial Port 23-5
Introduction 23-5
What Is Serial Communication? 23-5

The Serial Port Interface Standard 23-5

Connecting Two Devices with a Serial Cable
Serial Port Signals and Pin Assignments
Serial Data Format
Finding Serial Port Information for Your Platform
Using Virtual USB Serial Ports
Selected Bibliography

Getting Started with Serial I/O
Example: Getting Started
The Serial Port Session
Configuring and Returning Properties

Create a Serial PortObject
Overview of a Serial Port Object
Configuring Properties During Object Creation
The Serial Port Object Display
Creating an Array of Serial Port Objects

Connect tothe Device
Configure Communication Settings

Writeand Read Data
BeforeYouBegin
Example — Introduction to Writing and Reading Data
Controlling Access to the MATLAB Command Line
WritingData i
ReadingData,
Example — Writing and Reading Text Data
Example — Parsing Input Data Using textscan
Example — Reading BinaryData

Eventsand Callbacks
Introduction
Example — Introduction to Events and Callbacks
Event Types and Callback Properties
Respond To Event Information
Create and Execute Callback Functions
Enable Callback Functions After They Error
Example — Using Events and Callbacks

ControlPins
Properties of Serial Port Control Pins

23-30

23-31
23-31
23-31
23-32
23-33
23-38
23-44
23-45
23-46

23-49
23-49
23-49
23-50
23-52
23-54
23-55
23-55

23-57
23-57

li

lii

Contents

Signaling the Presence of Connected Devices 23-57

Controlling the Flow of Data: Handshaking 23-60
Debugging: Recording Information to Disk 23-63
Introduction 23-63
Recording Properties 23-63
Example: Introduction to Recording Information 23-64
Creating Multiple Record Files 23-64
Specifying a Filename 23-65
The Record File Format 23-65
Example: Recording Informationto Disk 23-66
SaveandLoad, 23-69
Usingsaveandload, 23-69
Using Serial Port Objects on Different Platforms 23-69
Disconnectand Clean Up 23-71
Disconnect a Serial Port Object 23-71
Clean Up the MATLAB Environment 23-71
Property Reference 23-73
Configure Serial Port Properties 23-73
Serial Port Object Properties 23-73
Properties — Alphabetical List 23-76

24|

Support Package Installation 24-2
What Is a Support Package? 24-2
Install Support Packagesc .. 24-2

Change Your Support Package Directory 24-4

External Programming Languages
and Systems

1 External Programming Languages and Systems

Integrate MATLAB with External Programming
Languages and Systems

1-2

MATLAB provides a flexible, two-way integration with other programming languages,
allowing you to reuse legacy code. For a list of programming languages and the supported
versions, see MATLAB Supported Interfaces to Other Languages.

Call C/C++ Code from MATLAB

MATLAB provides these features to help you integrate C/C++ algorithms into your
MATLAB applications.

A C/C++ shared library interface is a collection of functions dynamically loaded by an
application at run time. Using a shared library has the advantage of packaging
multiple library functions into one interface. In addition, MATLAB manages data type
conversions.

Call C++ Library Functions - To call functions in a C++ shared library, use the
clib package described in “C++ Libraries”.

Whenever possible, choose the C++ interface over the C-only interface. For
information about C++ support, see these limitations on page 5-31.

To call functions in a C shared library, use the calllib function. For information,
see “C Libraries”. This feature works best with C-only libraries, but has these
limitations on page 6-7.

If you want more control over data conversion and memory management, consider
writing a MEX file.

A MEX file is wrapper code around a C/C++ algorithm that handles the conversion of
MATLAB data types to C types. MEX files provide better performance than calling
functions through MATLAB shared library interfaces. Also, MEX files give you more
programmatic control over data conversion and memory management.

“C++ MEX Applications” use modern C++ programming features and, where
possible, shared copies of data.

“C MEX File Applications” use the C matrix library and is supported for existing
MEX functions. MathWorks recommends that whenever possible, choose C++ MEX
over C MEX file applications.

https://www.mathworks.com/support/sysreq/supported-language-interfaces.html

Integrate MATLAB with External Programming Languages and Systems

+ If you have multiple functions in a library or do not have performance issues,
consider writing a C++ library interface.

These features require C/C++ programming skills to create a library interface or to write
a MEX function. However, you can give the resulting library or MEX function to any
MATLAB user. The end user calls the functionality like any MATLAB function, without
knowing the underlying details of the C/C++ language implementation.

To call MATLAB from a C/C++ language program, see “MATLAB Engine API for C++” or
“MATLAB Engine API for C”.

Use Objects from Other Programming Languages in MATLAB

If you have functions and objects in another programming language, you can call them
from MATLAB. You do not need to be a software developer to integrate these objects into
your MATLAB application. However, you need access to third-party documentation for the
libraries.

MATLAB supports calling functions and using objects in the following languages.

* “C++ Libraries”

* “C Libraries”

* MEX File Functions for C/C++ and Fortran
* “Java Libraries”

* “Python Libraries”

¢ “.NET Libraries”

* COM Objects

Call MATLAB from Another Programming Language

You can call MATLAB from another language using Engine Applications on page 11-2.
Using MATLAB engine APIs, call MATLAB functions from your own application. MATLAB
has APIs for the following languages.

* Engine API for C++

* Engine API for Java

* Engine API for Python

1-3

1 External Programming Languages and Systems

1-4

* Engine API for C
* Engine API for Fortran

To create an engine application, install a MATLAB-supported compiler and use the mex
command to build the application.

Call Your Functions as MATLAB Functions

You can write your own functions and call them as MATLAB functions using MEX APIs on
page 7-3. You can write MEX functions in the following languages.

e C++ MEXAPIs
e C MEXAPIs
e Fortran MEX APIs

To create a MEX file, install a MATLAB-supported compiler and use the mex command to
build the function.

Communicate with Web Services

You can communicate with web services from MATLAB.

* MATLAB RESTful web services functions allow non-programmers to access many web
services using HTTP GET and POST methods.

* For functionality not supported by the RESTful web services functions, use the HTTP
Interface classes for writing customized web access applications.

» If your web service is based on Web Services Description Language (WSDL) document
technologies, then use the MATLAB WSDL functions.

See Also

More About

. “External Language Interfaces”

See Also

External Websites
. MATLAB Supported Interfaces to Other Languages
. Supported and Compatible Compilers

1-5

https://www.mathworks.com/support/sysreq/supported-language-interfaces.html
https://www.mathworks.com/support/compilers.html

External Data Interface (EDI)

* “Create Arrays with C++ MATLAB Data API” on page 2-2

* “Copy C++ MATLAB Data Arrays” on page 2-5

¢ “C++ Cell Arrays” on page 2-7

* “Access C++ Data Array Container Elements” on page 2-9

* “Operate on C++ Arrays Using Visitor Pattern” on page 2-11
* “MATLAB Data API Exceptions” on page 2-17

* “MATLAB Data API Types” on page 2-21

2 External Data Interface (EDI)

Create Arrays with C++ MATLAB Data API

2-2

In this section...

“Create Arrays” on page 2-2
“Operate on Each Element in an Array” on page 2-3

Create Arrays

The C++ MATLAB Data API lets applications running outside of MATLAB work with
MATLAB data through a MATLAB-neutral interface. The API uses modern C++ semantics
and design patterns and avoids data copies whenever possible by using MATLAB copy-on-
write semantics.

The header file for the MATLAB Data API is MatlabDataArray. hpp.

The matlab: :data: :Array class is the base class for all array types. It provides general
array information, such as type and size. The Array class supports both one-dimensional
and multi-dimensional arrays. The MATLAB Data API uses zero-based indexing.

To create an array, first create a factory using matlab: :data: :ArrayFactory.
matlab::data::ArrayFactory factory;

Use the factory to create a 2-by-2 array of type double. Specify the array values in
column-major format to match the ordering of the MATLAB statement A = [1 2; 3 4].
To inspect the array, use the functions in the matlab: :data: :Array class.

#include "MatlabDataArray.hpp"

int main() {
using namespace matlab::data;
ArrayFactory factory;
Array A = factory.createArray<double>({ 2,2 },
{1.0, 3.0, 2.0, 4.0 });

// Inspect array

ArrayType ¢ = A.getType();
ArrayDimensions d = A.getDimensions();
size t n = A.getNumberOfElements();

Create Arrays with C++ MATLAB Data API

return 0;
}
This code is equivalent to the following MATLAB statements.
A=1[12; 34];
c = class(A);
d = size(A);
n = numel(A);

The matlab: :data: : TypedArray class supports iterators, which enable you to use
range-based for loops. This example creates a 1-by-6 array from the 3-by-2 TypedArray.

#include "MatlabDataArray.hpp"

int main() {
using namespace matlab::data;
ArrayFactory factory;

// Create a 3-by-2 TypedArray
TypedArray<double> A = factory.createArray({3,2},
{1.1, 2.2, 3.3, 4.4, 5.5, 6.6 });

// Assign values of A to the double array C
double C[6];
int i = 0;
for (auto e : A) {
Cli++] = e;
}

return 0;

Operate on Each Element in an Array

Modify each element in a matlab: :data: :Array using a reference to the element. This
example multiplies each element in the matlab: :data: : TypedArray by a scalar value.

#include "MatlabDataArray.hpp"
int main() {

using namespace matlab::data;
ArrayFactory factory;

2-3

2 External Data Interface (EDI)

// Create a 3-by-2 TypedArray
TypedArray<double> A = factory.createArray({3,2},
{1.1, 2.2, 3.3, 4.4, 5.5, 6.6 });

// Define scalar multiplier
double multiplier(10.2);

// Multiple each element in A
for (auto& elem : A) {
elem *= multiplier;

}
return 0;

}

See Also

createArray | matlab: :data::TypedArray

2-4

Copy C++ MATLAB Data Arrays

Copy C++ MATLAB Data Arrays

The matlab: :data: :Array class supports both copy and move semantics. Copies of
Array objects create shared data copies. In the following C++ code, variables B and C
are copies of matlab: :data: :CharArray A; all three variables point to the same data.

#include "MatlabDataArray.hpp"

int main() {
using namespace matlab::data;
ArrayFactory factory;
CharArray A = factory.createCharArray("This is a char array.");

// Create a shared copy of A
CharArray B(A);

CharArray C = factory.createCharArray("");
// Copy the contents of A into C
C =A;

return 0;

}

Array supports copy-on-write semantics. Copies of an Array object are unshared when a
write operation is performed. In the previous example, modifying the variable B creates a
copy of the CharArray object with updated data. However, A and C remain shared
copies.

// B becomes unshared once modified
B[20] = charl6 _t(33);

C++ MATLAB Data Arrays support move semantics. When you pass a variable using
move, there is no copy of the variable.

Avoid Unnecessary Data Copying
If you index into or use an iterator on an array for read-only purposes, then the best

practice is to declare the array as const. Otherwise, the API functions might create a
copy of the array in anticipation of a possible copy-on-write operation.

2-5

2 External Data Interface (EDI)

See Also

createCharArray

2-6

C++ Cell Arrays

C++ Cell Arrays

To create a cell array, use the matlab: :data: :ArrayFactory createCellArray
function.

Create a CellArray that is equivalent to a MATLAB cell array defined with this MATLAB

statement. Note that MATLAB assigns the cells in column-major order.
C = {'Character Array',...
[true true false truel;...

[2.2 3.3 -4.2 6.0],...
int32(-3374)};

Create an ArrayFactory:

matlab::data::ArrayFactory factory;

Call createCellArray and define each cell contained in the cell array:
matlab::data::CellArray C = factory.createCellArray({ 2,2 },
factory.createCharArray("Character Array"),
factory.createArray<double>({ 1, 4 }, { 2.2, 3.3, -4.2, 6.0}),
factory.createArray<bool>({ 1, 4 }, { true, true, false, true }),
factory.createScalar<int32 t>(-3374)
)i

Modify the array by overwriting the value in the cell referred to in MATLAB as C{1,1}.
C[0]1[0] = factory.createCharArray("New Character Array");

Get a reference to the cell containing the double array and change the first element to
-2.2.

TypedArrayRef<double> doubleArray = C[1][0];
doubleArray[0] = -2.2;

Display the new values in the cell containing the double array:

TypedArray<double> const newArray = C[1][0];
for (auto e : newArray) {
std::cout << e << std::endl;

}

See Also
matlab::data::ArrayFactory

2-7

2 External Data Interface (EDI)

Related Examples
. “Access C++ Data Array Container Elements” on page 2-9

2-8

Access C++ Data Array Container Elements

Access C++ Data Array Container Elements

The C++ MATLAB Data API CellArray and StructArray types are containers for other
MATLAB Data Arrays. The elements in the containers are themselves arrays. There are
two ways to access these elements:

* Get areference to the elements of the container.
* Get a shared copy of the elements of the container.

Modify By Reference

To modify data in place, use a reference to the container element that you want to modify.
For example, this code modifies the values of the first cell in the CellArray object. The
first cell is a 1-by-3 logical array.

using namespace matlab::data;
ArrayFactory f;

auto cellArr = f.createCellArray({2,2},
f.createArray<bool>({1,3},{true, true, false}),
f.createCharArray("A char Array"),
f.createScalar<int32_t>(-3374),
f.createArray<double>({1,3},{2.2, 3.3, -4.2}));

// Get a reference to the first cell of the cell array.
TypedArrayRef<bool> ref = cellArr[0][0];

// Use the reference to modify the values in the cell.
for (auto& e : ref) {
e = false;

}

After running this code, the first element of the cell array is a 1-by-3 logical array with
each element set to false.

Copy Data from Container

You can access the data in a container using a shared copy. A shared copy enables you to
get the data from the container or to modify the data in a copy that becomes nonshared
when modified. Changing the data in a copy does not change the data in the container.

For example, this code creates a copy of the last cell in the CellArray, which is a 1-by-3
double array. The copy is modified by setting the first element in the double array to the
numeric value 5.5. After this modification, the value in the CellArray is unchanged and
the copy is no longer a shared value.

2-9

2 External Data Interface (EDI)

using namespace matlab::data;

ArrayFactory f;

auto cellArr = f.createCellArray({2,2},
f.createArray<bool>({1,3},{true, true, false}),
f.createCharArray("A cell Array"),
f.createScalar<int32_ t>(-3374),
f.createArray<double>({1,3},{2.2, 3.3, -4.2}));

// Get a shared copy of the last element of the cell array.

TypedArray<double> cpy = cellArr[1][1];
cpyl0] = 5.5;

See Also

Related Examples
. “C++ Cell Arrays” on page 2-7

2-10

Operate on C++ Arrays Using Visitor Pattern

Operate on C++ Arrays Using Visitor Pattern

The C++ MATLAB Data API supports the use of visitor classes via the
matlab::data::apply visitor and matlab::data::apply visitor ref
functions. These functions accept an array or array reference and a visitor class as inputs.

The apply visitor and apply visitor ref functions dispatch to the operations
defined by the visitor class based on input array type. The visitor class defines operations
to perform on specific types of array.

Use the visitor pattern in cases such as these:
* There are many operations that you need to perform on an array and the way to

perform them depends on the type of the array.

* The array returned by a function can be of different known types and you want to
handle all cases.

* You are working with heterogeneous structures like cell arrays or structure arrays.

Dispatch on Array or Array Reference

The apply_visitor function dispatches to the visitor class operation based on the type
of the input array. The syntax for calling apply visitor accepts a
matlab::data: :Array and your visitor class instance:

auto apply visitor(matlab::data::Array a, V visitor)

The apply visitor ref function dispatches to the visitor class operation based on the
type of the array reference passed as an input. The syntax for calling

apply visitor ref accepts a matlab::data: :ArrayRef and your visitor class
instance:

auto apply visitor ref(const matlab::data::ArrayRef& a, V visitor)

Overloading operator()

Implement your visitor class to overload the operator operator() for the array types
you want to operate on. For example, suppose one operation that you want to implement
is to return the text contained in a matlab: :data::CharArray asa std::string.
Implement the operation like this:

2-11

2 External Data Interface (EDI)

2-12

std::string operator()(matlab::data::CharArray arr){
return arr.toAscii();

}

As another example, suppose that you want to negate the logical values in a
matlab::data: :TypedArray. In this case, use a reference to the array:

void operator() (TypedArrayRef<bool> boolArrRef) {

std::cout << "Negate logical value: " << std::endl;
for (auto &b : boolArrRef) {

b = 1!b;
}

}

You must use an element reference in the range-based for loop to change the value in
the array.

Visitor Class to Display Contents of Cell Array

This example shows how to use a visitor class to define operations to perform on specific
types of matlab: :data: :Array.

The DisplayVisitor class implements operations to display the contents of cell arrays
for arrays of types bool, double, and char, and contained cell arrays. You can add new
operations to support other cell array contents by adding more overloaded functions.

type DisplayVisitor.cpp

#include "MatlabDataArray.hpp"
#include <iostream>

using namespace matlab::data;
void DisplayCell(const CellArray cellArray);

class DisplayVisitor {
public:
template <typename U>
void operator()(U arr) {}

void operator() (const TypedArray<bool> boolArr) {
std::cout << "Cell contains logical array: " << std::endl;
for (auto b : boolArr) {
printf s("sd ", b);
}

Operate on C++ Arrays Using Visitor Pattern

std::cout << "\n";

}
void operator() (const TypedArray<double> doubleArr) {
std::cout << "Cell contains double array: " << std::endl;
for (auto elem : doubleArr) {
std::cout << elem << " ";
}
std::cout << "\n";
}

void operator()(const CharArray charArr) {
std::cout << "Cell contains char array: " << std::endl;
for (auto elem : charArr) {
std::cout << char(elem);
}
std::cout << "\n";

}

void operator()(const CellArray containedCellArray) {
DisplayCell(containedCellArray);
}
+

void DisplayCell(const CellArray cellArray) {
DisplayVisitor v;
for (auto elem : cellArray) {
apply visitor(elem, v);
}
}

To use the class, pass a cell array to the DisplayCell function.
type callDisplayCell.cpp

int main() {
ArrayFactory factory;

// Create cell array

matlab::data::CellArray cellArray = factory.createCellArray({ 1,4 },
factory.createCharArray("A char array"),
factory.createArray<bool>({ 1,2 }, { false, true }),
factory.createArray<double>({ 2,2 }, { 1.2, 2.2, 3.2, 4.2 }),
factory.createCellArray({ 1,1 }, false));

2-13

2 External Data Interface (EDI)

2-14

// Call function
DisplayCell(cellArray);

return 0;

Visitor Class to Modify Contents of Cell Array

In this example, the Cel1ModifyVisitor class implements the operations to modify the
contents of cell arrays of types bool, double, and char, and contained cell arrays. You
can add new operations to support other cell array contents by adding more overloaded
functions.

The ModifyCell function calls apply visitor ref in aloop for each element in the
cell array. Because the objective is to modify the contents of the cell array, this example
uses references to the cell array contents.

type CellModifyVisitor.cpp

#include "MatlabDataArray.hpp"
#include "MatlabEngine.hpp"
#include <iostream>

using namespace matlab::data;
void ModifyCell(CellArray &cellArray);

class CellModifyVisitor {
public:
template <typename U>
void operator()(U arr) {}

void operator() (TypedArrayRef<bool> boolArrRef) {

std::cout << "Negate logical value: " << std::endl;
for (auto &b : boolArrRef) {

b = !b;
}

}

void operator() (TypedArrayRef<double> doubleArrRef) {
std::cout << "Add 1 to each value: " << std::endl;
for (auto &elem : doubleArrRef) {
elem = elem + 1;
}

Operate on C++ Arrays Using Visitor Pattern

std::cout << "\n";

}

void operator() (CharArrayRef charArrRef) {
std::cout << "Modify char array" << std::endl;
ArrayFactory factory;
charArrRef = factory.createCharArray("Modified char array");

}

void operator() (CellArrayRef containedCellArray) {
CellModifyVisitor v;
for (auto elem : containedCellArray) {
apply visitor ref(elem, v);

}

};

void ModifyCell(CellArray &cellArray) {
CellModifyVisitor v;
for (auto elem : cellArray) {
apply visitor ref(elem, v);
}
}

To use the class, pass a cell array to the ModifyCell function.
type callModifyCell.cpp

int main() {
ArrayFactory factory;

// Create cell array

matlab::data::CellArray cellArray = factory.createCellArray({ 1,4 },
factory.createCharArray("A char array"),
factory.createArray<bool>({ 1,2 }, { false, true }),
factory.createArray<double>({ 2,2 }, { 1.2, 2.2, 3.2, 4.2 }),
factory.createCellArray({ 1,1 }, false));

// Call function
ModifyCell(cellArray);

return 0;

2-15

2 External Data Interface (EDI)

See Also
matlab::data::apply visitor |matlab::data::apply visitor ref

Related Examples
. “C++ Cell Arrays” on page 2-7

2-16

MATLAB Data API Exceptions

MATLAB Data API Exceptions

In this section...

“matlab:
“matlab:
“matlab:
“matlab:
“matlab:
“matlab:
“matlab:
“matlab:
“matlab:
“matlab:
“matlab:
“matlab:
“matlab:
“matlab:
“matlab:
“matlab:
“matlab:
“matlab:
“matlab:
“matlab:
“matlab:
“matlab:
“matlab:

:data:
:data:
:data:
:data:
:data:
:data:
:data:
:data:
:data:
:data:
:data:
:data:
:data:
:data:
:data::
:data::
:data::
:data:
:data:
:data:
:data:
:data:
:data:

:CanOnlyUseOneStringIndexException” on page 2-17
:CantAssignArrayToThisArrayException” on page 2-18
:CantIndexIntoEmptyArrayException” on page 2-18
:DuplicateFieldNamelnStructArrayException” on page 2-18
:FailedToLoadLibMatlabDataArrayException” on page 2-18
:FailedToResolveSymbolException” on page 2-18
:InvalidArrayIndexException” on page 2-18
:InvalidDimensionsInSparseArrayException” on page 2-18
:InvalidFieldNameException” on page 2-18
:MustSpecifyClassNameException” on page 2-19
:NonAsciiCharInRequestedAsciiOutputException” on page 2-19
:NonAsciiCharInlnputDataException” on page 2-19
:InvalidArrayTypeException” on page 2-19
:NotEnoughIndicesProvidedException” on page 2-19

StringIndexMustBeLastException” on page 2-19
StringIndexNotValidException” on page 2-19
SystemErrorException” on page 2-20

:TooManyIndicesProvidedException” on page 2-20
:TypeMismatchException” on page 2-20
:WrongNumberOfEnumsSuppliedException” on page 2-20
:InvalidMemoryLayout” on page 2-20
:InvalidDimensionsInRowMajorArrayException” on page 2-20
:NumberOfElementsExceedsMaximumException” on page 2-20

matlab::data::CanOnlyUseOneStringindexException

The CanOnlyUseOneStringIndexException exception occurs if more than one string
index is provided.

2-17

2 External Data Interface (EDI)

2-18

matlab::data::CantAssignArrayToThisArrayException

The CantAssignArrayToThisArrayException exception occurs if assigning an array
to this array is not supported.

matlab::data::CantindexintoEmptyArrayException

The CantIndexIntoEmptyArrayException exception occurs when attempting any
indexing operation on an empty array.

matlab::data::DuplicateFieldNamelnStructArrayException

The DuplicateFieldNameInStructArrayException exception occurs if a duplicate
field name is encountered in a struct definition.

matlab::data::FailedToLoadLibMatlabDataArrayException

The FailedToLoadLibMatlabDataArrayException exception occurs if necessary
MATLAB Data Array libraries failed to load.

matlab::data::FailedToResolveSymbolException

The FailedToResolveSymbolException exception occurs if unable to resolve a
required symbol in the MATLAB Data Array libraries.

matlab::data::InvalidArraylndexException

The InvalidArrayIndexException exception occurs if the index provided is not valid
for the array being indexed.

matlab::data::InvalidDimensionsinSparseArrayException

The InvalidDimensionsInSparseArrayException exception occurs if the caller
attempts to create a sparse array with more than 2 dimensions.

matlab::data::InvalidFieldNameException

The InvalidFieldNameException exception occurs if field name is invalid for a struct.

MATLAB Data API Exceptions

matlab::data::MustSpecifyClassNameException

The MustSpecifyClassNameException exception occurs if class name is not specified.

matlab::data::NonAsciiCharinRequestedAsciiOutputException
The NonAsciiCharInRequestedAsciiOutputException exception occurs if user

attempts to create a CharArray or a StringArray with a std: :string and the
std: :string contains non-ascii characters.

matlab::data::NonAsciiCharinlnputDataException

The NonAsciiCharInInputDataException exception occurs if user attempts to create
a CharArray ora StringArray with a std::string and the std: :string contains
non-ascii characters.

matlab::data::InvalidArrayTypeException

The InvalidArrayTypeException exception occurs if the type of the rhs does not
match the type of TypedArray<T>

matlab::data::NotEnoughindicesProvidedException

The NotEnoughIndicesProvidedException exception occurs if not enough indices
are provided.

matlab::data::StringinhdexMustBeLastException

The StringIndexMustBelLastException exception occurs if a string index is not the
last index.

matlab::data::StringindexNotValidException

The StringIndexNotValidException exception occurs if a string index is not valid for
this array.

2-19

2 External Data Interface (EDI)

2-20

matlab::data::SystemErrorException

The SystemErrorException exception occurs if a system error occurs.

matlab::data::-TooManylndicesProvidedException

The TooManyIndicesProvidedException exception occurs if too many indices are
provided.

matlab::data::TypeMismatchException

The TypeMismatchException exception occurs if the element of the Array does not
contain T's.

matlab::data::WrongNumberOfEnumsSuppliedException

The WrongNumberOfEnumsSuppliedException exception occurs if the wrong number
of enums is provided.

matlab::data::InvalidMemoryLayout

The InvalidMemorylLayout exception occurs if you try to add a row-major array to a
column-major buffer or vice versa.

matlab::data::InvalidDimensionsinRowMajorArrayException

The InvalidDimensionsInRowMajorArrayException exception occurs if the row-
major array is not 2D.

matlab::data::NumberOfElementsExceedsMaximumException

The NumberOfElementsExceedsMaximumException exception occurs if the number of
elements is greater than size t.

See Also

MATLAB Data API Types

MATLAB Data API Types

In this section...

“matlab::data::ArrayDimensions” on page 2-21
“matlab::data::Enumeration” on page 2-21
“matlab::data:: MATLABString” on page 2-21
“matlab::data::ObjectArray” on page 2-21
“matlab::data::String” on page 2-22
“matlab::data::Struct” on page 2-22
“buffer ptr t and buffer deleter t” on page 2-22
“iterator” on page 2-22

“const _iterator” on page 2-22

“reference” on page 2-22

“const_reference” on page 2-22

“Reference Types” on page 2-22

matlab::data::ArrayDimensions

ArrayDimensions is defined as std: :vector<size t>inthe ArrayDimensions.hpp
header file.

matlab::data::Enumeration

Enumeration is defined in the Enumeration.hpp header file.

matlab::data::MATLABString

MATLABString is defined as optional<String> in the String.hpp header file.

matlab::data::ObjectArray

ObjectArray is defined as TypedArray<Object> in the ObjectArray.hpp header
file.

2-21

2 External Data Interface (EDI)

2-22

matlab::data::String

String is defined as std: :basic string<uchar>in the String.hpp header file.

matlab::data::Struct

Struct is defined in the Struct. hpp header file.

buffer_ptr_t and buffer_deleter_t

buffer ptr tisdefined asstd::unique ptr<T[], buffer deleter t>, where
buffer deleter tisdefinedasvoid (*)(void*).

iterator

iterator is defined as TypedIterator<T> in the TypedArray. hpp header file.

const_iterator

const iterator is defined as TypedIterator<typename
std::add const<T>::type>in the TypedArray.hpp header file.

reference
reference is defined in the TypedArray. hpp header file as typename

iterator::reference, where iterator::reference is T& for arithmetic types and
Reference<T> for non-arithmetic types.

const_reference
const reference is defined in the TypedArray. hpp header file as typename

const_iterator::reference, where const iterator::referenceis T& for
arithmetic types and Reference<T> for non-arithmetic types.

Reference Types

* ArrayRef is defined as Reference<Array> in the TypedArrayRef. hpp header file.

MATLAB Data API Types

CellArrayRef is defined as Reference<TypedArray<Array>> in the
TypedArrayRef.hpp header file.

CharArrayRef is defined as TypedArrayRef<CHAR16 T>in the CharArray.hpp
header file.

EnumArrayRef is defined as TypedArrayRef<Enumeration> in the
EnumArray.hpp header file.

SparseArrayRef is defined as Reference<SparseArray<T>> in the
SparseArrayRef. hpp header file.

StructArrayRef is defined as Reference<TypedArray<Struct>> in the
TypedArrayRef . hpp header file.

TypedArrayRef is defined as Reference<TypedArray<T>>in the
TypedArrayRef . hpp header file.

2-23

Using Java Libraries from MATLAB

3 Using Java Libraries from MATLAB

Getting Started with Java Libraries

3-2

From MATLAB, you can:

* Access Java class packages that support activities such as I/0O and networking.
* Access third party Java classes.

* Construct Java objects in MATLAB workspace.

* Call Java object methods, using either Java or MATLAB syntax.

* Pass data between MATLAB variables and Java objects.

Platform Support for JVM Software
Every installation of MATLAB includes Java Virtual Machine (JVM™) software. To create
and run programs that access Java objects, use the Java interpreter via MATLAB

commands.

To find out which version of JVM software MATLAB uses on your platform, type the
following at the MATLAB prompt:

version -java

For information about JVM support, see MATLAB Supported Language Interfaces.

Learn More About Java Programming Language

For a complete description of the Java language and for guidance in object-oriented
software design and programming, consult outside resources. One resource is the help
documentation on the www.oracle. com website.

See Also

Related Examples
. “Call Java Method” on page 3-4

https://www.mathworks.com/support/sysreq/supported-language-interfaces.html
https://www.oracle.com/index.html

See Also

External Websites
. MATLAB Supported Language Interfaces

3-3

https://www.mathworks.com/support/sysreq/supported-language-interfaces.html

3 Using Java Libraries from MATLAB

Call Java Method

3-4

This example shows how to call a method of the java.util.ArrayList class. The
example demonstrates what it means to have Java objects as references in MATLAB.

The java.util.ArraylList class is part of the Java standard libraries. Therefore, the
class is already on the Java class path. If you call a method in a class that is not in a
standard library, then update the Java class path so that MATLAB can find the method.
For information, see “Java Class Path” on page 3-10.

Choose Class Constructor to Create Java Object

Create an ArrayList object by using one of the class constructors. Display the class
methods and look for the ArrayList entries in the methods window.

methodsview('java.util.ArrayList"')

ArrayList (java.util.Collection)

ArraylList ()

ArraylList (int)
Choose the ArrayList () syntax, which constructs an empty list with an initial capacity
of 10.

Shorten Class Name

Use the import function to refer to the ArrayList class without specifying the entire
package name java.util.

import java.util.ArraylList

Create Array List

Create an empty ArrayList object.

A = ArraylList;

Call Java Method

Pass MATLAB Data to add Method

Add items to the ArrayList object. Look in the methods window at the signatures for
the add method.

void add (int,java.lang.0Object)
boolean add (java.lang.0Object)

Choose the boolean add(java.lang.0Object) syntax. The argument
java.lang.Object is a Java type. To find the corresponding MATLAB type, look at the
“Pass java.lang.Object” on page 3-61 table. If you pass a double argument, MATLAB
converts it to a java.lang.Double type.

Add Elements to ArraylList

To call the add method, use MATLAB syntax.

add(A,5);
A

A =
[5.0]
Alternatively, use Java syntax.

A.add(10);
A

A:

[5.0, 10.0]

Java Objects Are References in MATLAB

To observe the behavior of copying Java ohjects, assign A to a new variable B.
B = A;

B is a reference to A. Any change to the object referenced by B also changes the object at
A. Either MATLAB code or Java code can change the object. For example, add a value to
B, and then display A.

3 Using Java Libraries from MATLAB

3-6

add(B,15);
A

A:

[5.0, 10.0, 15.0]

Use ArrayList Object in MATLAB

Suppose that you call a Java method that returns a Java object of type ArrayList. If you
invoked the commands in the previous sections, variable A contains the following values:

class(A)

ans =
'java.util.ArrayList'

A

A =

[5.0, 10.0, 15.0]

To use A in MATLAB, convert the object to either a java.lang.0Object type orto a
primitive type. Then apply the MATLAB cell and cell2mat functions.

From the ArrayList methods window, find the toArray method that converts an
ArraylList to java.lang.Object[].

java.lang.0bject[] toArray (java.lang.Object[])
Convert A to java.lang.0bject.

res = toArray(A)

res =

java.lang.Object[]:

[5]
[10]
[15]

Convert the output to a MATLAB type.

See Also

res

cell(res)'
res =
1x3 cell array
[5] [10] [15]

To convert this value to a matrix, the elements must be the same type. In this example,
the values convert to type double.

data cell2mat(res)

data

5 10 15

See Also

import | javaMethod

Related Examples
. “Call Method in Your Own Java Class” on page 3-19

More About

. “Java Class Path” on page 3-10

. “Pass Data to Java Methods” on page 3-58

. “Handle Data Returned from Java Methods” on page 3-64
. “How MATLAB Allocates Memory”

External Websites

* https://docs.oracle.com/javase/7/docs/api/overview-summary.html

https://docs.oracle.com/javase/7/docs/api/overview-summary.html

3 Using Java Libraries from MATLAB

Simplify Java Class Names Using import Function

3-8

MATLAB commands can refer to any Java class by its fully qualified name, which includes
its package name. For example, the following are fully qualified names:

* java.lang.String
* java.util.Enumeration

A fully qualified name can be long, making commands and functions (such as
constructors) cumbersome to edit and to read. To refer to classes by the class name alone
(without a package name), first import the fully qualified name into MATLAB.

MATLAB adds all classes that you import to a list called the import list. To see what
classes are on that list, type import. Your code can refer to any class on the list by class
name alone.

When called from a function, import adds the specified classes to the import list in effect
for that function. When invoked at the command prompt, import uses the base import
list for your MATLAB platform.

For example, suppose that a function contains these statements:

import java.lang.String
import java.util.* java.awt.*
import java.util.Enumeration

The following statements refer to the String, Frame, and Enumeration classes without
using the package names.

str String('hello"');
frm = Frame;
methods Enumeration

Create java.lang.String object
Create java.awt.Frame object
List java.util.Enumeration methods

o® o° o°

To remove the list of imported Java classes, type:

clear import

See Also

import

See Also

Related Examples
. “Call Java Method” on page 3-4

3-9

3 Using Java Libraries from MATLAB

Java Class Path

3-10

To make Java classes available to MATLAB, place them on the Java class path. The class
path is a series of file and folder specifications. When loading a Java class, MATLAB
searches the files and folders in the order they occur on the class path. The search ends
when MATLAB finds a file that contains the class definition.

Built-in Java class packages—classes in the Java standard libraries—are already on the
class path. You do not need to modify the path to access these classes.

To access Java classes from MATLAB, add them to the class path. For information and
examples, see “Static Path” on page 3-12.

* JAR File Classes

» Packages

* Individual (unpackaged) classes

MATLAB segments the Java class path into a static path and a dynamic path. MATLAB
searches the static path before the dynamic path.

* Use the static path as the default path to load a Java class.

* Use the dynamic path when developing your own Java classes. You can modify and
load the dynamic path any time during a MATLAB session.

Java Class Path Options Action
Display class path Call the javaclasspath function.
Add files to static path Create an ASCII text file named

javaclasspath. txt in your preferences folder.
For information and examples, see “Static Path” on

page 3-12.
Add or remove files on dynamic Call the javaclasspath, javaaddpath, or
path javarmpath functions. These functions clear all

existing variables and global variables in the
workspace. For more information, see “Dynamic
Path” on page 3-18.

See Also

Java Class Path Options Action
Augment search path for native Create an ASCII text file named
method libraries. javalibrarypath. txt in your preferences folder.

For information, see “Locate Native Method
Libraries” on page 3-16.

See Also

javaclasspath

Related Examples
. “Call Java Method” on page 3-4
. “Call Method in Your Own Java Class” on page 3-19

More About

. “Static Path” on page 3-12

. “Dynamic Path” on page 3-18

. “Locate Native Method Libraries” on page 3-16

3-11

3 Using Java Libraries from MATLAB

Static Path

3-12

The static path is loaded at the start of each MATLAB session from the MATLAB built-in
Java path and the javaclasspath.txt file. The static path offers better Java class-
loading performance than the dynamic Java path. However, if you modify the static path,
you must restart MATLAB.

To add files to the static Java class path, create a javaclasspath. txt file. For
instructions, see “Create javaclasspath.txt File” on page 3-12.

For convenience when developing your own Java classes, add entries to the dynamic Java
class path. For information, see “Dynamic Path” on page 3-18.

For more information about how MATLAB uses the class path, see “Java Class Path” on
page 3-10.

Create javaclasspath.txt File

Each line in the javaclasspath. txt file contains a reference to a Java class folder or
JAR file. To create the file:
1 Create an ASCII text file named javaclasspath. txt.
2 Enter the name of a Java class folder or JAR file, one per line. The format of the name
depends on how the class is defined.
* For classes defined in Java packages, see “Add Packages” on page 3-13.

» For classes defined in individual . class files, see “Add Individual (Unpackaged)
Classes” on page 3-13.

* For classes defined in Java Archive (JAR) files, see “Add JAR File Classes” on page
3-13.

3 Simplify folder specifications in cross-platform environments by using the
$matlabroot, $arch, and $jre _home macros.

4 Save the file in your preferences folder. To view the location of the preferences folder,
type:
prefdir

Alternatively, save the javaclasspath. txt file in your MATLAB startup folder. To
identify the startup folder, type pwd at the command line immediately after starting

Static Path

MATLAB. Classes specified in the javaclasspath. txt file in the startup folder
appear on the path before classes specified in the file in the preferences folder. If a
class appears in more than one folder or jar file, then Java uses the first one it finds.

5 Restart MATLAB.
MATLAB reads the static class path only at startup. If you edit javaclasspath.txt or

change your . class files while MATLAB is running, then restart MATLAB to put those
changes into effect.

If you do not want MATLAB to use the entries in the javaclasspath. txt file, then start
MATLAB with the -nouserjavapath option.

For information about using the dynamic class path when writing your own Java classes,
see “Dynamic Path” on page 3-18. For information about the startup folder, see
“MATLAB Startup Folder”.

Add Individual (Unpackaged) Classes

To make individual classes—classes that are not part of a package—available in MATLAB,
specify the full path to the folder containing the . class files. For example, for a compiled
Java class in the file c:\work\javaclasses\test.class, add the following entry to
the javaclasspath. txt file.

c:\work\javaclasses

Add Packages

To make a package available to MATLAB, specify the full path to the parent folder of the
highest level folder of the package path. This folder is the first component in the package
name. For example, if your Java class package com.mw.tbx.ini has its classes in folder
c:\work\com\mw\tbx\ini, add the following entry to the javaclasspath. txt file.

c:\work

Add JAR File Classes

A JAR file contains multiple Java classes and packages in a compressed ZIP format. For
information on the jar (Java Archive) tool and JAR files, consult your Java development
documentation.

3-13

3 Using Java Libraries from MATLAB

3-14

To make the contents of a JAR file available for use in MATLAB, specify the full path,
including the full file name, for the JAR file. You also can put the JAR file on the MATLAB
path.

Note The path requirement for JAR files is different from the requirement for . class
files and packages, for which you do not specify file names.

For example, you have a JAR file named mylibrary. jar in the folder C:\Documents
\MATLAB\, containing a method, package. class.mymethod(params).

* Edit the javaclasspath. txt file.

cd(prefdir)
edit javaclasspath.txt

* Add the following text on a new line in the file.

C:\Documents\MATLAB\mylibrary. jar
* Save and close the file.
* Restart MATLAB.
* Call mymethod.

package.class.mymethod(params)

See Also

More About

. “Java Class Path” on page 3-10
. “Dynamic Path” on page 3-18
. “MATLAB Startup Folder”

External Websites
* Java™ Platform, Standard Edition 7 API Specification

https://docs.oracle.com/javase/7/docs/api/overview-summary.html

Load Java Class Definitions

Load Java Class Definitions

MATLAB loads a Java class automatically when your code first uses it, for example, when
you call its constructor. To display a list of currently loaded Java classes, call the inmem
function. This function returns a list of classes in the output argument J. For example:

~,~,j1 = inmem;
j
j —1

2x1 cell array

'java.util.Date'
"com.mathworks.ide.desktop.MLDesktop'

MATLAB displays what is loaded on your system.

Note When you call the which function on methods defined by Java classes, the function
only displays the classes currently loaded into the MATLAB workspace. In contrast,
which displays MATLAB classes, whether or not they are loaded.

See Also

inmem

3-15

3 Using Java Libraries from MATLAB

Locate Native Method Libraries

3-16

Java classes can dynamically load native methods using the Java method
java.lang.System.loadLibrary("LibFile"). To load the library file LibFile, the
folder containing it must be on the Java Library Path. The JVM software defines this path
at startup.

You can augment the search path for native method libraries by creating an ASCII text file
named javalibrarypath.txt in your preferences folder. Follow these guidelines when
editing this file.

* Create the file.
cd(prefdir)
edit javalibrarypath.txt
* Specify each new folder on a line by itself.

* Specify only the folder names, not the names of the DLL files. The
System. loadLibrary call reads the file names.

* In cross-platform environments, simplify the specification of folders by using the
$matlabroot, $arch, and $jre home macros.

You also can create a javalibrarypath. txt file in your MATLAB startup folder. To
identify the startup folder, type pwd at the command line immediately after starting
MATLAB. Libraries specified in the javalibrarypath.txt file in the startup folder
override libraries specified in the file in the preferences folder.

To disable using the javalibrarypath. txt file, start MATLAB with the -
nouserjavapath option.

See Also
prefdir

More About
. “MATLAB Startup Folder”

Load Class Using Java Class.forName Method

Load Class Using Java Class.forName Method

Instead of using the Java Class . forName method, call the MATLAB javaObjectEDT
function. For example, replace this statement:

java.lang.Class.forName('xyz.myapp.MyClass"')
with:

javaObjectEDT('xyz.myapp.MyClass')

See Also
javaObjectEDT

3-17

3 Using Java Libraries from MATLAB

Dynamic Path

3-18

MATLAB segments the Java class path into a static path and a dynamic path. MATLAB
searches the static path before the dynamic path.

MATLAB provides the dynamic path as a convenience for when you develop your own Java
classes. You can change class definitions on the dynamic path without restarting
MATLAB. Therefore, it is useful to put a user-defined Java class definition on the dynamic
path while you develop and debug the class.

While the dynamic path offers greater flexibility in changing the path, Java classes on the
dynamic path might load more slowly than classes on the static path. Also, classes on the
dynamic path might not behave identically to classes on the static path. If your class does
not behave as expected, then use the static path.

After developing a Java class, put the class on the static path. For more information, see
“Static Path” on page 3-12

To add a class to the dynamic path, use the javaclasspath and javaaddpath
functions. To remove an entry, use the javarmpath function. These functions clear all
existing variables and global variables in the workspace.

Note Do not put Java classes on the static path if they have dependencies on classes on
the dynamic path.

See Also

javaaddpath | javaclasspath | javarmpath

More About
. “Static Path” on page 3-12

Call Method in Your Own Java Class

Call Method in Your Own Java Class

To define new Java classes and subclasses of existing classes, use a Java Development Kit
external to MATLAB. For information on supported versions of JDK™ software, see the
MATLAB Supported Language Interfaces website.

After you create class definitions in . java files, use your Java compiler to
produce . class files. The next step is to make the class definitions in those . class files
available for you to use in MATLAB.

This example shows how to call a method in your own Java class. The example uses a
class file named myclass. class in the folder C:\Documents\MATLAB\ containing a
method package.myclass.mymethod(params).

Put the class file on the dynamic Java class path, making the class available in the current
MATLAB session only. MATLAB provides the dynamic path as a convenience for when you
develop your own Java classes.

* Add the class to the dynamic Java class path. To access the class, you must modify the
Java path every time you start MATLAB.

javaaddpath('C:\Documents\MATLAB\ ")

* Call the method. Substitute your own class file name and path, and call the method
with the appropriate parameter list.

package.myclass.mymethod(params)

» Make the class always available in MATLAB. Add it to the static class path by editing
the javaclasspath. txt file in your prefdir folder.

See Also
javaaddpath

More About
. “Dynamic Path” on page 3-18
. “Static Path” on page 3-12

3-19

https://www.mathworks.com/support/sysreq/supported-language-interfaces.html

3 Using Java Libraries from MATLAB

External Websites
. MATLAB Supported Language Interfaces

3-20

https://www.mathworks.com/support/sysreq/supported-language-interfaces.html

How MATLAB Represents Java Arrays

How MATLAB Represents Java Arrays

The term Java array refers to a container object that holds a fixed number of values of a
single type. The type of an array is written as type[]. An array of arrays—also known as
a multidimensional array—uses two or more sets of brackets, such as String[][].

The term dimension refers to the number of subscripts required to address the elements
of an array. Dimension is not a measure of length, width, and height. For example, a 5-
by-1 array is one-dimensional, because you use one subscript to access an individual
element. To work with a two-dimensional array, create an array of arrays. To add further
dimensions, add more levels to the array, making it an array of arrays of arrays, and so
on.

MATLAB treats multilevel Java arrays like matrices and multidimensional arrays. Use the
same MATLAB syntax to access elements of a Java array.

Array Indexing

Java array indices are zero-based while MATLAB array indices are one-based. In Java
programming, you access the elements of array y of length N using y[0] through
y[N-1]. When working with this array in MATLAB, you access these elements using y (1)
through y (N).

For an example, see “Access Elements of Java Array” on page 3-26.

Shape of Java Arrays

A two-dimensional MATLAB array is a rectangle, as each row is of equal length and each
column of equal height. A Java array is an array of arrays and does not necessarily hold to
this rectangular form. Each individual lower-level array might have a different length.

The following picture shows an array of three underlying arrays of different lengths. The
term jagged (or ragged) is commonly used to describe this arrangement of array elements
as the array ends do not match up evenly. When a Java method returns a jagged array of
primitive Java types, MATLAB stores it in a cell array.

jAr‘r‘a'_.r[Di " " " " | length = 5
length = 2
length = 3

3-21

3 Using Java Libraries from MATLAB

3-22

The MATLAB string function pads a jagged Java string array, making it a rectangular
MATLAB array.

Interpret Size of Java Arrays

The MATLAB size function returns the length of the Java array. The number of columns
is always 1.

The potentially ragged shape of a Java array makes it impossible to size the array in the
same way as for a MATLAB array. In a Java array, no single value represents the size of
the lower-level arrays.

For example, consider the following Java array.

1

mwm_[T q
e

size(A) returns the dimensions of the highest array level of A. The highest level of the
array has a size of 3-by-1.

sizelA)=3xl

size(A)

ans =
3 1

To find the size of a lower-level array, for example the five-element array in row 3, refer to
the row explicitly.

size(A(3))

ans =
5 1

You can specify a dimension in the size command using the following syntax. However,
this command only sizes the first dimension, dim=1, the only nonunary dimension.

m = size(X,dim)
size(A,1)

See Also

ans =

Interpret Number of Dimensions of Java Arrays

The MATLAB ndims function always returns a value of 2 for the number of dimensions in
a Java array. This value is the number of dimensions in the top-level array.

Display Java Vector

MATLAB displays a Java vector as a column but processes it as if it were a row vector. For
examples, see “Concatenate Java Arrays” on page 3-35.

See Also

ndims | size

3-23

3 Using Java Libraries from MATLAB

Create Array of Java Objects

3-24

The MATLAB javaArray function lets you create a Java array that MATLAB handles as a
single multidimensional array. You specify the number and size of the array dimensions
along with the class of objects you intend to store in it. Using the one-dimensional Java
array as its primary building block, MATLAB then builds a Java array that satisfies the
dimensions requested in the javaArray command.

To create a Java object array, use the MATLAB javaArray function. For example, the
following command creates a Java array of four lower-level arrays, each containing five
objects of the java.lang.Double class.

dblArray = javaArray('java.lang.Double',4,5);

The javaArray function does not initialize values in the array. This code copies the first
four rows of MATLAB array A, containing randomly generated data, into dblArray.

A = rand(5);
form=1:4
for n = 1:5
dblArray(m,n) = java.lang.Double(A(m,n));
end
end

dblArray
dblArray =

java.lang.Double[][]:

[0.7577] [0.7060] [0.8235] [0.4387] [0.4898]
[0.7431] [0.0318] [0.6948] [0.3816] [0.4456]
[0.3922] [0.2769] [0.3171] [0.7655] [0.6463]
[0.6555] [0.0462] [0.9502] [0.7952] [0.7094]

You must convert each element of A to the java.lang.Doub'le type. For more
information, see “Pass Java Objects” on page 3-61.

Create Array of Primitive Java Types

To pass an array of a primitive Java type to a Java method, you must pass in an array of
the equivalent MATLAB type. For the type mapping details, see “MATLAB Type to Java
Type Mapping” on page 3-58.

See Also

For example, create a java.awt.Polygon by looking at the constructors in the following
methods window.

methodsview('java.awt.Polygon')

This constructor uses an array of Java int.
Polygon (int[],int[],int)

MATLAB converts a MATLAB double to a Java scalar or array int. Create two MATLAB
arrays, identifying four points of a polygon.

[10 40 95 125 10];

[50 15 0 60 50];

X =
y =
polygon = java.awt.Polygon(x,y,length(x));

To call the Polygon object method contains, look at its signature in the method
window.

boolean contains (double,double)

MATLAB converts a MATLAB double to a Java double. This statement checks if the
point (50,40) is within the polygon.

contains(polygon,50,40)
ans =
logical

1

See Also

javaArray

More About

. “Pass Java Objects” on page 3-61
. “MATLAB Type to Java Type Mapping” on page 3-58

3-25

3 Using Java Libraries from MATLAB

Access Elements of Java Array

MATLAB Array Indexing

To access elements of a Java object array, use the MATLAB array indexing syntax,
A(row,column). In a Java program, the syntax is A[row-1][column-1].

Single Subscript Indexing

When you refer to the elements of a MATLAB matrix with a single subscript, MATLAB
returns a single element of the matrix. In contrast, single subscript (linear) indexing into
a multidimensional Java array returns a subarray.

For example, create a MATLAB array.

form=1:4
for n = 1:5
matlabArr(m,n) = (m*10)+n;
end
end
matlabArr

matlabArr =

11 12 13 14 15
21 22 23 24 25
31 32 33 34 35
41 42 43 44 45

Copy the contents into a Java array.

javaArr = javaArray('java.lang.Integer',4,5);
form = 1:4
for n = 1:5
javaArr(m,n) = java.lang.Integer(matlabArr(m,n));
end
end
javaArr
javaArr =

java.lang.Integer[][]:

3-26

Access Elements of Java Array

[11] [12] [13] [14] [15]
[21] [22] [23] [24] [25]
[31] [32] [33] [34] [35]
[41] [42] [43] [44] [45]

Index value 3 returns a single element in the MATLAB array.
matlabArr(3)
ans = 31
Index value 3 returns the entire third row in a Java array.
javaArr(3)
ans =

java.lang.Integer[]:

[31]
[32]
[33]
[34]
[35]

Linear indexing into a Java array enables you to specify an entire array from a larger
array structure. Then you can manipulate it as an object.

Colon Operator Indexing

To specify a range of elements in an array, use the colon operator (:). For example,
create a 4-by-5 Java array.

dblArray = javaArray('java.lang.Double',4,5);
form=1:4
for n = 1:5
dblArray(m,n) = java.lang.Double((m*10)+n);
end
end
dblArray

dblArray =

3-27

3 Using Java Libraries from MATLAB

3-28

java.lang.Double[][]:

[11] [12] [13] [14] [15]
[21] [22] [23] [24] [25]
[31] [32] [33] [34] [35]
[41] [42] [43] [44] [45]

Create a subarray row2Array from the elements in columns 2 through 4.
row2Array = dblArray(2,2:4)

row2Array =
java.lang.Double[]:

[22]
[23]
[24]

You also can use the colon with linear indexing to refer to all elements in the entire
matrix. However, Java and MATLAB arrays are stored differently in memory meaning that
the order of the elements in a linear array is different. Java array elements are stored in a
row-by-column format, an order that matches the rows of the matrix. MATLAB array
elements are stored column-wise, an order that matches the columns. For example,
convert the 4-by-5 array dblArray into a 20-by-1 linear array.

linearArray dblArray(:)

linearArray

java.lang.Double[]:

[11]
[12]
[13]
[14]
[15]
[21]
[22]
[23]
[24]
[25]
[31]
[32]
[33]

Access Elements of Java Array

[34]
[35]
[41]
[42]
[43]
[44]
[45]

Using END in a Subscript

To reference the top-level array in a multilevel Java array, use the end keyword as the
first subscript. For example, display data from the third to the last rows of Java array
dblArray.

last2rows = dblArray(3:end,:)

last2rows
java.lang.Double[][]:

[31] [32] [33] [34] [35]
[41] [42] [43] [44] [45]

Do not use end on lower-level arrays. Because of the potentially ragged nature of the
arrays, MATLAB cannot determine the end value. For more information, see “Shape of
Java Arrays” on page 3-21.

Converting Object Array Elements to MATLAB Types

When you access an element of a java.lang.0bject array, MATLAB converts the
element to a MATLAB type, based on the table in “java.lang.Object Return Types” on page
3-65. MATLAB does not convert elements of any other type of Java array.

For example, if a java.lang.0bject array contains a java.lang.Double element,
then MATLAB converts the element to a MATLAB double. However, MATLAB does not
convert a java.lang.Double element in a java.lang.Double array. MATLAB returns
it as java.lang.Double.

3-29

3 Using Java Libraries from MATLAB

See Also

More About

. “Shape of Java Arrays” on page 3-21

. “java.lang.Object Return Types” on page 3-65
. “Array Indexing”

3-30

Assign Values to Java Array

Assign Values to Java Array

To assign values to objects in a Java object array, use the MATLAB command syntax. For
example, the following statement assigns a value to Java array A of type
java.lang.Double.

A(row,column) = java.lang.Double(value)

In a Java program, you would assign the value to A[row-1][column-1]. For more
information on the differences between Java and MATLAB arrays, see “How MATLAB
Represents Java Arrays” on page 3-21.

To run the examples in this topic, create a 4-by-5 array dblArray. The values displayed
for dblArray depend on the order in which you run the examples.

dblArray = javaArray('java.lang.Double',4,5);
form=1:4
for n = 1:5
dblArray(m,n) = java.lang.Double((m*10)+n);
end
end
dblArray

dblArray =

java.lang.Double[][]:

[11] [12] [13] [14] [15]
[21] [22] [23] [24] [25]
[31] [32] [33] [34] [35]
[41] [42] [43] [44] [45]

Single Subscript Indexing Assignment

You can use single-subscript indexing to assign values to an array. For example, create a
5-by-1 Java array and assign it to a row of dblArray.

onedimArray = javaArray('java.lang.Double',5);
for k = 1:5

onedimArray(k) = java.lang.Double(100*k);
end

Replace row 3 with the values of onedimArray.

3-31

3 Using Java Libraries from MATLAB

dblArray(3) = onedimArray
dblArray =
java.lang.Double[][]:
[11 [12] [13] 14] [15]
[21 [22] [23] 24] [25]

] [

] [
[100] [200] [300] [400] [500]
[41] [42] [43] [44] [45]

Linear Array Assignment

To assign a value to every element of a multidimensional Java array, use the MATLAB
colon operator (:). For example, initialize the contents of dblArray to zero.

dblArray(:) = java.lang.Double(0)
dblArray =

java.lang.Double[][]:

[0] [0] [0] [0] [0]
[0] [0] [0] [0] [0]
[0] [0] [0] [0] [0]
(0] (0] (0] (0] (0]

Use the colon operator as you would when working with MATLAB arrays. For example,
assign one value to each row in dblArray.

dblArray(1,:) = java.lang.Double(125);
dblArray(2,:) = java.lang.Double(250);
dblArray(3,:) = java.lang.Double(375);
dblArray(4,:) = java.lang.Double(500)
dblArray =

java.lang.Double[][]:

[125] [125] [125] [125] [125]
[250] [250] [250] [250] [250]
[375] [375] [375] [375] [375]
[500] [500] [500] [500] [500]

3-32

Assign Values to Java Array

Empty Matrix Assignment

You can assign the empty matrix ([]) to a Java array element. MATLAB stores the null
value, rather than a 0-by-0 array.

dblArray(2,2) = []
dblArray =

java.lang.Double[][]:

[125] [125] [125] [125] [125]
[250] [] [250] [250] [250]
[375] [375] [375] [375] [375]
[500] [500] [500] [500] [500]

Subscripted Deletion

If you assign an empty matrix to an entire row or column of a MATLAB array, then
MATLAB removes that row or column from the array. When you assign the empty matrix
to a Java array, the array maintains its dimensions.

For example, create a MATLAB array.

form=1:4
for n = 1:5
matlabArr(m,n) = (m*10) + n;
end
end
matlabArr

matlabArr =
11 12 13 14 15
21 22 23 24 25
31 32 33 34 35
41 42 43 44 45

Assign the empty matrix to the fourth column. This statement changes its dimensions
from 4-by-5 to 4-by-4.

matlabArr(:,4) = []

matlabArr =
11 12 13 15

3-33

3 Using Java Libraries from MATLAB

21 22 23 25
31 32 33 35
41 42 43 45

When you assign the empty matrix to the Java array dblArray, the array maintains its 4-
by-5 dimensions.

dblArray(:,4) = []
dblArray =

java.lang.Double[][]:

[125] [125] [125] [] [125]
[250] [] [250] [] [250]
[375] [375] [375] [] [375]
[500] [500] [500] [] [500]

3-34

Concatenate Java Arrays

Concatenate Java Arrays

To concatenate arrays of Java objects, use the MATLAB cat function or the square
bracket ([]) operators.

You can concatenate Java objects only along the first (vertical) or second (horizontal) axis.
For more information, see “How MATLAB Represents Java Arrays” on page 3-21.

Two-Dimensional Horizontal Concatenation

This example horizontally concatenates two Java arrays. Create 2-by-3 arrays d1 and d2.

dl = javaArray('java.lang.Double',2,3);
form=1:2
for n = 1:3
dl(m,n) = java.lang.Double(n*2 + m-1);
end
end
dl

[2 [4] [6]
[3 [5] [7]
d2 = javaArray('java.lang.Double',2,2);
form=1:2
for n = 1:3
d2(m,n) = java.lang.Double((n+3)*2 + m-1);
end
end
d2
d2 =

java.lang.Double[][]:

[8] [10] [12]
[9] [11] [13]

Concatenate the two arrays along the second (horizontal) dimension.

3-35

3 Using Java Libraries from MATLAB

d3

cat(2,d1,d2)
d3 =
java.lang.Double[][]:
[2] [4] [6] [8] [10] [12]
[3] [5] [7] [9] [11] [13]

Vector Concatenation

This example show the difference between row and column concatenation for vectors.
Create two vectors J1 and J2.

import java.lang.Integer

J1 = [1;
for ii = 1:3
J1 = [J1;Integer(ii)];
end
Jl
J1l =

java.lang.Integer|[]:

[1]
(2]

[3]
J2 = [1];
for ii = 4:6
J2 = [J2;Integer(ii)];
end
J2
J2 =

java.lang.Integer[]:
[4]
[5]
[6]

Concatenate by column. Horizontally concatenating two Java vectors creates a longer
vector, which prints as a column.

3-36

Concatenate Java Arrays

Jh

[J1,32]
Jh =

java.lang.Integer[]:

[1]
[2]
[3]
[4]
[5]
(6]

Concatenate by row. Vertically concatenating two Java vectors creates a 2-D Java array.

Jv [J1;32]
Jv =
java.lang.Integer[][]:

[1] [2] [3]
[4] [5] [6]

Note Unlike MATLAB, a 3x1 Java array is not the same as a Java vector of length 3.
Create a 3x1 array.

import java.lang.Integer
arrl = javaArray('java.lang.Integer',3,1)

arrl =
java.lang.Integer[][]:
[1
[1
[]

Create a vector of length 3.

arr2 = javaArray('java.lang.Integer',3)

arr2 =

java.lang.Integer[]:

3-37

3 Using Java Libraries from MATLAB

———
—_—

See Also

More About

. “Construct and Concatenate Java Objects” on page 3-43
. “Creating, Concatenating, and Expanding Matrices”
. “How MATLAB Represents Java Arrays” on page 3-21

3-38

Create Java Array References

Create Java Array References

Java arrays in MATLAB are references. Assigning an array variable to another variable
results in a second reference to the array, not a copy of the array. For example, create and
initialize origArray.
origArray = javaArray('java.lang.Double',b3,4);
for m = 1:3

for n = 1:4

origArray(m,n) = java.lang.Double((m*10)+n);

end
end
origArray

origArray =
java.lang.Double[][]:

[11] [12] [13] [14]
[21] [22] [23] [24]
[31] [32] [33] [34]
Create a second reference to the array newArrayRef.

newArrayRef = origArray;

Change the array referred by newArrayRef. The changes also show up in origArray.

newArrayRef(3,:) = java.lang.Double(0);
origArray

origArray =

java.lang.Double[][]:

[11] [12] [13] [14]
[21] [22] [23] [24]
[0] [0] [0] [0]

3-39

3 Using Java Libraries from MATLAB

See Also

Related Examples
. “Create Copy of Java Array” on page 3-41

3-40

Create Copy of Java Array

Create Copy of Java Array

To make a copy of an existing Java array, use subscript indexing. For example, create and
initialize origArray.

origArray = javaArray('java.lang.Double',3,4);
form = 1:3
for n = 1:4
origArray(m,n) = java.lang.Double((m*10)+n);
end
end
origArray
origArray =

java.lang.Double[][]:
[11] [12] [13] [14]
[21] [22] [23] [24]
[31] [32] [33] [34]
Copy the entire contents to newArray.

newArray = origArray(:,:)

newArray
java.lang.Double[][]:
[11] [12] [13] [14]
[21] [22] [23] [24]
[31] [32] [33] [34]
Change elements of newArray.
newArray(3,:) = java.lang.Double(0)
newArray =
java.lang.Double[][]:
[11] [12] [13] [14]

[21] [22] [23] [24]
[0] [O] [0] [0]

3-41

3 Using Java Libraries from MATLAB

3-42

The values in origArray do not change.
origArray
origArray =
java.lang.Double[][]:
[11] [12] [13] [14]

[21] [22] [23] [24]
[31] [32] [33] [34]

See Also

Related Examples

“Create Java Array References” on page 3-39

Construct and Concatenate Java Objects

Construct and Concatenate Java Objects

Create Java Object

Many Java method signatures contain Java object arguments. To create a Java object, call
one of the constructors of the class. For an example, see “Call Java Method” on page 3-4.

Concatenate Objects of Same Class
To concatenate Java objects, use either the cat function or the [] operators.

Concatenating objects of the same Java class results in an array of objects of that class.

valuel java.lang.Integer(88);
value2 java.lang.Integer(45);
cat(l,valuel,value?)

ans =
java.lang.Integer|[]:

[88]
[45]

Concatenate Objects of Unlike Classes

If you concatenate objects of unlike classes, MATLAB finds one class from which all the
input objects inherit. MATLAB selects the lowest common parent in the Java class
hierarchy as the output class. For example, concatenating objects of java.lang.Byte,
java.lang.Integer, and java.lang.Double creates an object of the common parent
to the three input classes, java.lang.Number.

byte = java.lang.Byte(127);

integer = java.lang.Integer(52);

double = java.lang.Double(7.8);

[byte integer double]

ans =

java.lang.Number[]:

3-43

3 Using Java Libraries from MATLAB

[127]
[52]
[7.8000]

If there is no common, lower-level parent, then the resultant class is
java.lang.Object.

byte = java.lang.Byte(127);
point = java.awt.Point(24,127);
[byte point]

ans =

java.lang.Object[]:

[1271
[1x1 java.awt.Point]

See Also

Related Examples
. “Call Java Method” on page 3-4

3-44

Save and Load Java Objects to MAT-Files

Save and Load Java Objects to MAT-Files

To save or serialize a Java object to a MATile, call the save function. To load the object
from a MAT-file back into MATLAB, call the load function.

When you save or load a Java object, the object and its class must meet all this criteria:

* The class implements the Java API Serializable interface, either directly or by
inheriting it from a parent class. Any embedded or otherwise referenced objects also
must implement Serializable.

* Do not change the class definition between saving and loading the object. Changes to
the data fields or methods of a class prevent the loading of an object that was
constructed with another class definition.

» Values in transient data fields are not saved with the object. Either the class does not
have any transient data fields, or the values are not significant.

If you define your own Java classes, or subclasses of existing classes, follow the same
criteria to enable saving and loading objects of the class in MATLAB. For details on
defining classes to support serialization, consult your Java development documentation.

See Also

load | save

3-45

3 Using Java Libraries from MATLAB

Data Fields of Java Objects

3-46

Access Public and Private Data

Java classes can contain member variables called fields which might have public or
private access.

To access public data fields, which your code can read or modify directly, use the syntax:

object.field

To read from and, where allowed, to modify private data fields, use the accessor methods
defined by the Java class. These methods are sometimes referred to as get and set
methods.

For example, the java.awt.Frame class has both private and public data fields. The
read accessor method getSize returns a java.awt.Dimension object.

frame = java.awt.Frame;
frameDim = getSize(frame)

frameDim =

java.awt.Dimension[width=0,height=0]

The Dimension class has public data fields height and width. Display the value of
height.

height = frameDim.height
height = 0

Set the value of width.
frameDim.width = 42
frameDim =

java.awt.Dimension[width=42,height=0]

Data Fields of Java Objects

Display Public Data Fields of Java Object

To list the public fields of a Java object, call the fieldnames function. For example,
create an Integer object and display the field names.

value = java.lang.Integer(0);
fieldnames(value)

ans =
'MIN_VALUE'
‘MAX_VALUE'
'TYPE'
'SIZE'

To display more information about the data fields, type:
fieldnames(value, '-full"')

ans =
'static final int MIN VALUE'
'static final int MAX VALUE'
'static final java.lang.Class TYPE'
'static final int SIZE'

Access Static Field Data

A static data field is a field that applies to an entire class of objects. To access static
fields, use the class name. For example, display the TYPE field of the Integer class.

thisType = java.lang.Integer.TYPE

thisType
int
Alternatively, create an instance of the class.

value = java.lang.Integer(0);
thatType = value.TYPE

thatType =

int

3-47

3 Using Java Libraries from MATLAB

MATLAB does not allow assignment to static fields using the class name. To assign a
value, use the static set method of the class or create an instance of the class. For
example, assign value to the following staticFieldName field by creating an instance
of java.className.

objectName = java.className;
objectName.staticFieldName = value;

See Also

fieldnames

3-48

Determine Class of Java Object

Determine Class of Java Object

To find the class of a Java object, use the class function. For example:

value = java.lang.Integer(0);
myClass = class(value)

myClass = java.lang.Integer

The class function does not tell you whether the class is a Java class. For this
information, call the isjava function. For example, the class value is a Java class:

isjava(value)

ans =
1

To find out if an object is an instance of a specific class, call the isa function. The class
can be a MATLAB built-in, a user-defined class, or a Java class. For example:

isa(value, 'java.lang.Integer"')

ans =
1

See Also

class |isa|isjava

3-49

3 Using Java Libraries from MATLAB

Method Information

3-50

Display Method Names
The methods function returns information on methods of MATLAB and Java classes.

To return the names of all the methods (including inherited methods) of the class, use
methods without the '-full' qualifier. Names of overloaded methods are listed only
once.

Display Method Signatures

With the '-full' qualifier, methods returns a listing of the method names (including
inherited methods) along with attributes, argument lists, and inheritance information on
each. Each overloaded method is listed separately.

For example, display a full description of all methods of the java.awt.Dimension
object.

methods java.awt.Dimension -full

Methods for class java.awt.Dimension:
Dimension()
Dimension(java.awt.Dimension)
Dimension(int, int)
java.lang.Class getClass() % Inherited from java.lang.Object
int hashCode() % Inherited from java.lang.0Object
boolean equals(java.lang.0Object)
java.lang.String toString()
void notify() % Inherited from java.lang.Object
void notifyAll() % Inherited from java.lang.Object
void wait(long) throws java.lang.InterruptedException
% Inherited from java.lang.Object
void wait(long,int) throws java.lang.InterruptedException
% Inherited from java.lang.Object
void wait() throws java.lang.InterruptedException
% Inherited from java.lang.Object
java.awt.Dimension getSize()
void setSize(java.awt.Dimension)
void setSize(int,int)

See Also

Display Syntax in Figure Window

To see methods implemented by a particular Java (or MATLAB) class, use the
methodsview function. Specify the class name (along with its package name, for Java
classes) in the command line. If you have imported the package that defines this class,
then the class name alone suffices.

This command lists information on all methods in the java.awt.MenuItem class:
methodsview java.awt.MenuItem

A new window appears, listing one row of information for each method in the class. Each
row in the window displays up to six fields of information describing the method. This
table lists the fields displayed in the methodsview window along with a description and
examples of each field type.

Fields Displayed in methodsview Window

Field Name Description Examples

Qualifiers Method type qualifiers abstract, synchronized

Return Type Type returned by the void, java.lang.String
method

Name Method name addActionListener,

dispatchEvent

Arguments Types of arguments passed [boolean, java.lang.Object
to method

Other Other relevant information |throws java.io.IOException

Inherited From Parent of the specified class |java.awt.MenuComponent

See Also

methods | methodsview

3-51

3 Using Java Libraries from MATLAB

Determine What Classes Define a Method

3-52

To display the fully qualified name of a method implemented by a loaded Java class, call
the which function. To find all classes that define the specified method, use which with
the -all qualifier.

For example, to find the package and class name for the concat method, type:
which concat

If the java.lang.String class is loaded, MATLAB displays:

concat is a Java method % java.lang.String method

If the String class has not been loaded, MATLAB displays:

concat not found.

Suppose that you loaded the Java String and java.awt.Frame classes. Both of these
classes have an equals method. Type:

which -all equals
The MATLAB display includes entries like these:
equals is a Java method ava.lang.String method

%]
equals is a Java method % java.awt.Frame.equals
equals is a Java method % com.mathworks.jmi.MatlabPath method

The which function operates differently on Java classes than it does on MATLAB classes:

* which always displays MATLAB classes, whether they are loaded
* which only displays Java classes that are loaded

You can find out which Java classes are currently loaded by using the command
[m,Xx,]jl=inmem.

See Also

inmem | which

See Also

More About

. “Load Java Class Definitions” on page 3-15
. “Java Class Path” on page 3-10

3-53

3 Using Java Libraries from MATLAB

Java Methods That Affect MATLAB Commands

3-54

MATLAB commands that operate on Java objects and arrays use the methods that are
implemented within, or inherited by, the class. There are some MATLAB commands that
you can alter in behavior by changing the Java methods that they use.

Changing the Effect of disp and display

You call the disp function when you:

* Display the value of a variable or an expression in MATLAB.
* Terminate a command line without a semicolon.
» Display a Java object in MATLAB.

When calling disp on a Java object, MATLAB formats the output using the object
toString method. If the class does not implement this method, then MATLAB uses an
inherited toString method. If no intermediate ancestor classes define this method,
MATLAB uses the toString method defined by the java.lang.0bject class.

To change the way MATLAB displays an object, implement your own toString method in
your class definition.

Changing the Effect of isequal

The MATLAB isequal function compares two or more arrays for equality in type, size,
and contents. Also, you can use this function to test Java objects for equality.

When you compare two Java objects using isequal, MATLAB performs the comparison
using the Java method, equals. MATLAB first determines the class of the objects
specified in the command, and then uses the equals method implemented by that class.
If equals is not implemented in this class, then MATLAB uses an inherited equals
method. If no intermediate ancestor classes define this method, MATLAB uses the
equals method defined by the java.lang.0bject class.

To change the way MATLAB compares members of a class, implement your own equals
method in your class definition.

See Also

Changing the Effect of double, string, and char
You can change the output of the MATLAB double, string, and char functions by
defining your own Java methods, toDouble, toString, and toChar. For more

information, see “Convert to MATLAB Numeric Types” on page 3-66 and “Convert to
MATLAB Strings” on page 3-67.

See Also

More About
. “Functions to Convert Java Objects to MATLAB Types” on page 3-66

3-55

3 Using Java Libraries from MATLAB

How MATLAB Handles Undefined Methods

3-56

If your MATLAB command invokes a nonexistent method on a Java object, MATLAB looks
for a function with the same name. If MATLAB finds a function of that name, it attempts
to invoke it. If MATLAB does not find a function with that name, it displays a message
stating that it cannot find a method by that name for the class.

For example, MATLAB has a function named size, and the Java API java.awt.Frame
class also has a size method. If you call size on a Frame object, the size method
defined by java.awt.Frame is executed. However, if you call size on an object of
java.lang.String, MATLAB does not find a size method for this class. Therefore, it
executes the MATLAB size function instead.

text = java.lang.String('hello');
size(text)

ans =
1 1

Note When you define a Java class for use in MATLAB, avoid giving any of its methods
the same name as a MATLAB function.

See Also

Avoid Calling Java main Methods in MATLAB

Avoid Calling Java main Methods in MATLAB

When calling a main method from MATLAB, the method returns when it executes its last
statement, even if the method creates a thread that is still executing. In other
environments, the main method does not return until the thread completes execution.

Be cautious when calling main methods from MATLAB, particularly main methods that
start a user interface. main methods are written assuming they are the entry point to
application code. When called from MATLAB, main is not the entry point, and the fact
that other Java Ul code might be already running can lead to problems.

See Also

3-57

3 Using Java Libraries from MATLAB

Pass Data to Java Methods

3-58

MATLAB Type to Java Type Mapping

When you pass MATLAB data as arguments to Java methods, MATLAB converts the data
into types that best represent the data to the Java language. For information about type
mapping when passing data to arguments of type java. lang, see “Pass Java Objects” on

page 3-61.

Each row in the following table shows a MATLAB type followed by the possible Java
argument matches, from left to right in order of closeness of the match. The MATLAB
types (except cell arrays) can be scalar (1-by-1) arrays or matrices. The Java types can be

scalar values or arrays.

MATLAB |Java Parameter Type (Scalar or Array)

Argumen |Types Other Than Object

t
Closest Type < > Least Close
Type

logical |boolean |byte short int long float double

double |double |float long int short byte boolean

single |[float double

uint8 byte short int long float double

int8

uintle |short int long float double

intl6

uint32 |int long float double

int32

uint64 |long float double

int64

string |String

scalar,

character

vector,

char

scalar

Pass Data to Java Methods

MATLAB

Java Parameter Type (Scalar or Array)

Argumen [Types Other Than Object

t
Closest Type < > Least Close
Type

string |Stringl[]

array,

cell array

of

character

vectors

See “Pass

String

Argument

s” on page

3-60.

Java Java any

object of |Object of |superclass

type type of jClass

jClass jClass

cell array (Object[]

of object

MATLAB |Unsupport

object ed

How Array Dimensions Affect Conversion

The term dimension means the number of subscripts required to address the elements of
an array. For example, a 5-by-1 array has one dimension, because you index individual

elements using one array subscript.

In converting MATLAB to Java arrays, MATLAB handles dimension in a special manner.
For a MATLAB array, dimension is the number of nonsingleton dimensions in the array.
For example, a 10-by-1 array has dimension 1. Whereas, a 1-by-1 array has dimension 0
because you cannot index into a scalar value. In Java code, the number of nested arrays
determines the dimension. For example, double[][] has dimension 2, and double has
dimension 0.

3-59

3 Using Java Libraries from MATLAB

3-60

If the number of dimensions of the Java array matches the number of dimensions in
MATLAB array n, then the converted Java array has n dimensions. If the Java array has
fewer than n dimensions, then the conversion drops singleton dimensions, starting with
the first one. The conversion stops when the number of remaining dimensions matches
the number of dimensions in the Java array. If the Java array has more than n dimensions,
then MATLAB adds trailing singleton dimensions.

Convert Numbers to Integer Arguments

When passing an integer type to a Java method that takes a Java integer parameter, the
MATLAB conversion is the same as the Java conversion between integer types. In
particular, if the integer is out-of-range, it does not fit into the number of bits of the
parameter type. For out-of-range integers, MATLAB discards all lowest n bits. The value n
is the number of bits in the parameter type. This conversion is unlike the conversion
between MATLAB integer types, where out-of-range integers are converted to the
maximum or minimum value represented by the destination type.

If the argument is a floating-point number, then MATLAB does not convert it to an integer
in the same manner as Java. MATLAB first converts a floating-point number to a 64-bit
signed integer with the fractional part truncated. Then the number is processed as if it
were an int64 argument.

A floating-point number is too large to be represented in a 64-bit integer when it is
(outside the range from -263-263, In which case, MATLAB uses the following conversions:

* 1int, short, and byte parameter values to 0.
* long parameter values to java.lang.Long.MIN VALUE.

e Infand -Inf valuesto -1.
* NaN values to 0.

Pass String Arguments

To call a Java method with an argument defined as java.lang.String, pass a MATLAB
string or character vector. MATLAB converts the argument to a Java String object. You
also can pass a String object returned by a Java method.

If the method argument is an array of type String, then pass a string array or a cell
array of character vectors. MATLAB converts the input to a Java array of String objects,
with dimensions adjusted as described in “How Array Dimensions Affect Conversion” on
page 3-59.

Pass Data to Java Methods

Pass Java Objects

To call a method that has an argument belonging to a Java class (other than
java.lang.0bject), you must pass a Java object that is an instance of that class.
MATLAB does not support Java autoboxing, the automatic conversion of MATLAB types to
Java Object types. For example, MATLAB does not convert double to
java.lang.Double for a parameter of type Double.

Pass java.lang.Object

A special case exists when the method takes an argument of the java.lang.0Object
class. Since this class is the root of the Java class hierarchy, you can pass objects of any
class in the argument. MATLAB automatically converts the argument to the closest Java
Object type, which might include Java-style autoboxing. This table shows the conversion.

MATLAB Argument

Java Object in Package java.lang

cell array of character vectors

logical Boolean
double Double
single Float
char scalar Character
string scalar String
nonempty char vector

uint8 Byte
int8

uintl6 Short
intl6

uint32 Integer
int32

uint64 Long
int64

string array (nonscalar) String[]

Java object

Argument unchanged

cell array

Object[]

MATLAB object

Unsupported

3-61

3 Using Java Libraries from MATLAB

3-62

Pass Array of Objects

To call a method with an argument defined as java.lang.0Object or an array of
java.lang.0bject, pass either a Java array or a MATLAB cell array. MATLAB
automatically converts the cell array elements to their Java types as described in the
“Pass java.lang.Object” on page 3-61 table. A Java array is an array returned from a Java
constructor. You also can construct a Java array in MATLAB using the javaArray
function.

Pass Cell Array of Java Objects

To create a cell array of Java objects, use the MATLAB syntax {al, a2, ...}. You index
into a cell array of Java objects in the usual way, with the syntax a{m,n, ...}. For
example, create cell array A:

al = java.lang.Double(100);
a2 = java.lang.Float(200);
A = {al,a2}

A =

1x2 cell array

[1x1 java.lang.Double] [1x1 java.lang.Float]

Pass Empty Matrices, Nulls, and Missing Values

MATLAB converts an empty matrix as follows.

» If the argument is an empty character vector and the parameter is declared as
String, then MATLAB passes in an empty (not null) Java String object.

» For all other cases, MATLAB converts an empty array to a Java null.
Empty (0-length) Java arrays remain unchanged.

MATLAB converts <missing> values in strings to null.

Overloaded Methods

When calling an overloaded method on a Java object, MATLAB compares the arguments
you pass to the arguments defined for the methods. In this context, the term method

See Also

includes constructors. MATLAB determines the method to call and converts the
arguments to Java types according to the Java conversion rules. For more information, see
“Pass Array of Objects” on page 3-62.

When you call a Java method, MATLAB ensures that:

The object or class (for a static method) has a method by that name.

The invocation passes the same number of arguments of at least one method with
that name.

3 Each passed argument is converted to the Java type defined for the method.
If all these conditions are satisfied, then MATLAB calls the method.

In a call to an overloaded method, if there is more than one candidate, MATLAB selects
the one with arguments that best fit the calling arguments. First, MATLAB rejects
methods that have argument types incompatible with the passed arguments. For example,
if the method has a double argument, a char argument is incompatible.

MATLAB then selects the method with the highest fitness value, which is the sum of the
fitness values of all its arguments. The fitness value for each argument is the fitness of the
base type minus the difference between the MATLAB array dimension and the Java array
dimension. For information about array dimensionality, see “How Array Dimensions Affect
Conversion” on page 3-59. If two methods have the same fitness, then the first one
defined in the Java class is chosen.

See Also

More About
. “Handle Data Returned from Java Methods” on page 3-64

3-63

3 Using Java Libraries from MATLAB

Handle Data Returned from Java Methods

3-64

If a Java method returns a primitive data type, then MATLAB converts the data, as shown
in the table in “Primitive Return Types” on page 3-64.

If a Java method signature specifies a return data of type java.lang.0bject, then
MATLAB converts the actual type returned, as shown in the table in “java.lang.Object
Return Types” on page 3-65.

MATLAB does not convert other Java objects to MATLAB types. For information about
handling this data, see “Functions to Convert Java Objects to MATLAB Types” on page 3-
66.

Primitive Return Types

MATLAB converts primitive data returned from a Java method into types that best
represent the data to the MATLAB language. This table shows how MATLAB converts the
data. For some Java types, MATLAB treats scalar and array returns differently.

Java Return Type Resulting MATLAB Type — |Resulting MATLAB Type —

Scalar Array
boolean logical logical
byte double int8
short double intl6
int double int32
long double int64
float double single
double double double
char char char
Example

The signature for the java.lang.String method toCharArray is:

public char[] toCharArray()

Call the method on a String object. MATLAB converts the output to a char array.

Handle Data Returned from Java Methods

str = java.lang.String('hello");
res = str.toCharArray'
res =

1x5 char array

hello

java.lang.Object Return Types

When a Java method is declared to return data of type java.lang.0bject, MATLAB
converts its value depending on the actual type returned. This table shows how MATLAB
converts the data.

Actual Java Type Resulting MATLAB Type — Scalar
java.lang.Boolean logical

java.lang.Byte double

java.lang.Short double

java.lang.Integer double

java.lang.Long double

java.lang.Float double

java.lang.Double double

java.lang.Character char

java.lang.String char

There is no conversion if the return argument is a subclass of Object or an array of
Object. The object remains a Java object. However, if you index into a returned Object
array, MATLAB converts the value according to the table. For more information, see
“Converting Object Array Elements to MATLAB Types” on page 3-29.

Example
Refer to the following signature for a getData method.
java.lang.0bject getData()

If getData returns a java.lang. Integer object, then MATLAB converts the value to
double.

3-65

3 Using Java Libraries from MATLAB

3-66

Functions to Convert Java Objects to MATLAB Types

MATLAB only converts object data return values if the method signature specifies
java.lang.Object. If the signature specifies any other object type, then MATLAB does
not convert the value. For example, MATLAB does convert the return value for this
method signature:

java.lang.0Object getData()

But MATLAB does not convert the return value for this method:

java.lang.String getData()

To convert Java object data to MATLAB data, use MATLAB functions as described in these
topics:

* “Convert to MATLAB Numeric Types” on page 3-66

* “Convert to MATLAB Strings” on page 3-67

* “Convert to MATLAB Structure” on page 3-67

* “Convert to MATLAB Cell Array” on page 3-67

Convert to MATLAB Numeric Types

To convert Java numeric types to MATLAB types, use a numeric MATLAB function like
double. The action taken by the double function depends on the class of the object you

specify.

» If the object is an instance of a class derived from java.lang.Number, then MATLAB
converts the object to a MATLAB doub'e.

» If the object is not an instance of a numeric class, then MATLAB checks the class
definition for a toDouble method. MATLAB calls this method to perform the
conversion.

* Ifyou create your own class, then write a toDouble method to specify your own type
conversion.

Note If the class of the object is not derived from java.lang.Number and it does not
implement a toDouble method, then the double function displays an error message.

Handle Data Returned from Java Methods

Convert to MATLAB Strings

To convert java.lang.String objects and arrays to MATLAB strings or character
vectors, use the MATLAB string or char function.

If the object specified in the MATLAB function is not an instance of the
java.lang.String class, then MATLAB checks its class definition for a toString or a
toChar method. If you create your own class, then write a toString or toChar method
to specify the string conversion.

Note If the class of the object is not java.lang.String and it does not implement a
toChar method, then the char function displays an error message.

Convert to MATLAB Structure

If a Java class defines field names, then use the struct function to convert the object
data to a MATLAB structure.

Suppose that you call a Java method that returns a java.awt.Polygon object. The class
defines fields xpoints and ypoints. To run this example, create a polygon variable.

polygon = java.awt.Polygon([14 42 98 124],[55 12 -2 62],4);
Convert the object to a structure and display the x,y coordinates for the third point.

pstruct = struct(polygon)

pstruct
struct with fields:
npoints: 4
xpoints: [4x1 int32]
ypoints: [4x1 int32]
Convert to MATLAB Cell Array

If your Java methods return different types of data, then use the cell function to convert
the data to MATLAB types. Elements of the resulting cell array are converted according to
the “Primitive Return Types” on page 3-64 and “java.lang.Object Return Types” on page
3-65 tables.

3-67

3 Using Java Libraries from MATLAB

Suppose that you call Java methods that return arguments of type java.lang.Double,
java.awt.Point, and java.lang.String. To run this example, create variables of
these types.

import java.lang.* java.awt.*

% Create a Java array of double
dblArray = javaArray('java.lang.Double',1,10);
for m=1:10
dblArray(1,m) = Double(m * 7);
end

% Create a Java array of points

ptArray = javaArray('java.awt.Point',3);
ptArray(l) = Point(7.1,22);
ptArray(2) = Point(5.2,35);
ptArray(3) = Point(3.1,49);

% Create a Java array of strings
strArray = javaArray('java.lang.String',2,2);

strArray(1l,1) = String('one');
strArray(1l,2) = String('two"');
strArray(2,1) = String('three');
strArray(2,2) = String('four');

Convert each array to a cell array. You can use cellArray in MATLAB functions.

cellArray = {cell(dblArray),cell(ptArray),cell(strArray)}

cellArray
1x3 cell array
{1x10 cell} {3x1 cell} {2x2 cell}
Each cell holds an array of a different type. Display the contents.

cellArray{1,1} % Array of type double

ans =
1x10 cell array

[7] [14] [21] [28] [35] [42] [49] [56] [63] [70]

cellArray{1,2} % Array of type Java.awt.Point

3-68

See Also

ans =
3x1 cell array
[1x1 java.awt.Point]
[1x1 java.awt.Point]
[1x1 java.awt.Point]
cellArray{1,3} % Array of type char array

ans =

2x2 cell array

'one' "two'
'"three' "four'
See Also
More About

. “Pass Data to Java Methods” on page 3-58
. “How MATLAB Represents Java Arrays” on page 3-21

. “Converting Object Array Elements to MATLAB Types” on page 3-29

3-69

3 Using Java Libraries from MATLAB

Java Heap Memory Preferences

3-70

You can adjust the amount of memory that MATLAB allocates for Java objects.

Note The default heap size is sufficient for most cases.

To adjust the Java heap size:

1 Onthe Home tab, in the Environment section, click {& Preferences. Select

MATLAB > General > Java Heap Memory.
2 Select a Java heap size value using the slider or spin box.

Note Increasing the Java heap size decreases the amount of memory available for
storing data in arrays.

3 Click OK.
Restart MATLAB.

If the amount of memory you specified is not available upon restart, then MATLAB resets
the value to the default, and displays an error dialog box. To readjust the value, repeat the
previous steps.

If increasing the heap size does not eliminate memory errors, then check your Java code
for memory leaks. Eliminate references to objects that are no longer useful. For more
information, see the Java SE Troubleshooting guide at http://www.oracle.com/
technetwork/java/javase/index-138283.html.

http://www.oracle.com/technetwork/java/javase/index-138283.html
http://www.oracle.com/technetwork/java/javase/index-138283.html

Read and Write MATLAB MAT-Files in
C/C++ and Fortran

* “Applications to Read and Write MATLAB MAT-Files” on page 4-2
* “Custom Applications to Access MAT-Files” on page 4-3

» “MAT-File API Library and Include Files” on page 4-6

* “What You Need to Build Custom Applications” on page 4-8

* “Copy External Data into MAT-File Format with Standalone Programs” on page 4-9
* “Create MAT-File in C or C++"” on page 4-14

* “Read MAT-File in C/C++" on page 4-16

* “Create MAT-File in Fortran” on page 4-18

* “Read MAT-File in Fortran” on page 4-19

* “Work with mxArrays” on page 4-20

* “Table of MAT-File Source Code Files” on page 4-23

* “Build on macOS and Linux Operating Systems” on page 4-25

* “Build on Windows Operating Systems” on page 4-28

* “Share MAT-File Applications” on page 4-29

4 Read and Write MATLAB MAT-Files in C/C++ and Fortran

Applications to Read and Write MATLAB MAT-Files

4-2

Under certain circumstances, you might need to write a custom program to interact with
MATLAB MAT-file data. These programs are called applications to read MAT-files. Before
writing a custom application to read MAT-file data, determine if MATLAB meets your data
exchange needs by reviewing the following topics.

* The save and load functions.

» “Supported File Formats for Import and Export”.

* The importdata function and “Import Images, Audio, and Video Interactively”.

* “Methods for Importing Data”.

MATLAB supports applications written in C, C++, or Fortran to read MAT-files. To create
the application, write your program using MATLAB APIs, then build using the mex
command.

To write C/C++ applications, see:

¢ “MATLAB C API to Read MAT-File Data”
¢ “C Matrix APT”
* “C MEX API” (optional)

To write Fortran applications, see:

o “MATLAB Fortran API to Read MAT-File Data”
e “Fortran Matrix API”
* “Fortran MEX API” (optional)

See Also

importdata

More About

. “Supported File Formats for Import and Export”
. “Methods for Importing Data”

. “Save and Load Workspace Variables”

Custom Applications to Access MAT-Files

Custom Applications to Access MAT-Files

In this section...

“Why Write Custom Applications?” on page 4-3
“MAT-File Interface Library” on page 4-4
“Exchanging Data Files Between Platforms” on page 4-5

Why Write Custom Applications?

To bring data into a MATLAB application, see “Methods for Importing Data”. To save data
to a MAT-file, see “Save and Load Workspace Variables”. Use these procedures when you
program your entire application in MATLAB, or if you share data with other MATLAB
users. There are situations, however, when you must write a custom program to interact
with data. For example:

* Your data has a custom format.

* You create applications for users who do not run MATLAB, and you want to provide
them with MATLAB data.

* You want to read data from an external application, but you do not have access to the
source code.

Before writing a custom application, determine if MATLAB meets your data exchange
needs by reviewing the following topics.

* The save and load functions.

» “Supported File Formats for Import and Export”.

* The importdata function and “Import Images, Audio, and Video Interactively”.

* “Methods for Importing Data”.

If these features are not sufficient, you can create custom C/C++ or Fortran programs to
read and write data files in the format required by your application. There are two types
of custom programs:

* Standalone program — Run from a system prompt or execute in MATLAB (see “Run
External Commands, Scripts, and Programs” on page 21-3). Requires MATLAB
libraries to build the application.

* MEX file — Built and executed from the MATLAB command prompt. For information
about creating and building MEX files, see “C MEX File Applications”.

4-3

4 Read and Write MATLAB MAT-Files in C/C++ and Fortran

MAT-File Interface Library

The MAT-File API contains routines for reading and writing MAT-files. Call these routines
from your own C/C++ and Fortran programs. Use these routines, rather than attempt to
write your own code, to perform these operations, since using the library insulates your

4-4

applications from future changes to the MAT-file structure. For more information, see
“MAT-File API Library and Include Files” on page 4-6.

MATLAB provides the MATFile type for representing a MAT-file.

MAT-File Routines

MAT-File API Function Purpose

matOpen Open a MATile.

matClose Close a MAT-ile.

matGetDir Get a list of MATLAB arrays from a MAT-file.
matGetVariable Read a MATLAB array from a MAT-ile.
matPutVariable Write a MATLAB array to a MAT-file.
matGetNextVariable Read the next MATLAB array from a MAT-file.
matDeleteVariable Remove a MATLAB array from a MAT-file.

matPutVariableAsGlobal

Put a MATLAB array into a MAT-file such that the
load command places it into the global
workspace.

matGetVariableInfo

Load a MATLAB array header from a MAT-file (no
data).

matGetNextVariableInfo

Load the next MATLAB array header from a MAT-
file (no data).

MAT-File C-Only Routines

matGetFp

Get an ANSI® C file pointer to a MAT-file.

The MAT-File Interface Library does not support MATLAB objects created by user-defined

classes.

Do not create different MATLAB sessions on different threads using MAT-File API
functions. MATLARB libraries are not multithread safe so you can use these functions only

on a single thread at a time.

Custom Applications to Access MAT-Files

Exchanging Data Files Between Platforms

You can work with MATLAB software on different computer systems and send MATLAB
applications to users on other systems. MATLAB applications consist of MATLAB code
containing functions and scripts, and MAT-files containing binary data.

Both types of files can be transported directly between machines: MATLAB source files
because they are platform independent, and MAT-files because they contain a machine
signature in the file header. MATLAB checks the signature when it loads a file and, if a
signature indicates that a file is foreign, performs the necessary conversion.

Using MATLAB across different machine architectures requires a facility for exchanging
both binary and ASCII data between the machines. Examples of this type of facility
include FTP, NFS, and Kermit. When using these programs, be careful to transmit MAT-
files in binary file mode and MATLAB source files in ASCII file mode. Failure to set these
modes correctly corrupts the data.

4 Read and Write MATLAB MAT-Files in C/C++ and Fortran

MAT-File API Library and Include Files

4-6

MATLAB provides include and library files to write programs to read and write MAT-files.
The following table lists the path names to these files. The term matlabroot refers to the
root folder of your MATLAB installation. The term arch is a unique string identifying the
platform.

MAT-File API Folders

Platform Contents Folder
Microsoft® |Include files matlabroot\extern\include
Windows® Tipraries matlabroot\bin\win64
Examples matlabroot\extern\examples\eng mat
macOS Include files matlabroot/extern/include
Linux® Libraries matlabroot/bin/arch
Examples matlabroot/extern/examples/eng mat

MAT-File API Include Files

The matlabroot\extern\include folder holds header files containing function
declarations with prototypes for the routines that you can access in the API Library. These
files are the same for Windows, macOS, and Linux systems. The folder contains:

* The matrix.h header file that contains a definition of the mxArray structure and
function prototypes for matrix access routines.

* The mat.h header file that contains function prototypes for mat routines.

MAT-File API Libraries

The name of the libraries folder, which contains the shared (dynamically linkable)
libraries, is platform-dependent.

Shared Libraries on Windows Systems
The bin folder contains the run-time version of the shared libraries:

* The libmat.dl1 library of MAT-file routines (C/C++ and Fortran)

MAT-File API Library and Include Files

* The libmx.d11 library of array access and creation routines
Shared Libraries on macOS and Linux Systems

The bin/arch folder, where arch is the value returned by the computer('arch"')
command, contains the shared libraries. For example, on Apple macOS 64-bit systems,
the folder is bin/maci64:

* The libmat.dylib library of MAT-file routines (C/C++ and Fortran)
* The libmx.dylib library of array access and creation routines
Example Files

The extern/examples/eng mat folder contains C/C++ and Fortran source code for
examples demonstrating how to use the MAT-file routines.

4 Read and Write MATLAB MAT-Files in C/C++ and Fortran

What You Need to Build Custom Applications

4-8

To create a custom application, you need the tools and knowledge to modify and build
source code. In particular, you need a compiler supported by MATLAB.

To exchange custom data with MATLAB data, use a MAT-file, a MATLAB format binary file.
You do not need the MAT-file format specifications because the MAT-File Interface Library
provides the API to the data. You need to know the details of your data to map it into
MATLAB data. Get this information from your product documentation, then use the
mxArray type in the Matrix Library to declare the data in your program.

In your custom program, use functions in the MATLAB C/C++ and Fortran API:

* MAT-File Interface Library
* Matrix Library

To build the application, use the mex build script with the -client engine option.

See Also

mex | mxArray

More About

. “MAT-File API Library and Include Files” on page 4-6
. “Build Engine Applications with IDE” on page 11-25

External Websites
. Supported and Compatible Compilers

https://www.mathworks.com/support/compilers/current_release/

Copy External Data into MAT-File Format with Standalone Programs

Copy External Data into MAT-File Format with
Standalone Programs

In this section...

“Overview of matimport.c Example” on page 4-9
“Declare Variables for External Data” on page 4-10
“Create mxArray Variables” on page 4-10

“Create MATLAB Variable Names” on page 4-11
“Read External Data into mxArray Data” on page 4-11
“Create and Open MAT-File” on page 4-12

“Write mxArray Data to File” on page 4-12

“Clean Up” on page 4-12

“Build the Application” on page 4-12

“Create the MAT-File” on page 4-12

“Import Data into MATLAB” on page 4-13

Overview of matimport.c Example

This topic shows how to create a standalone program, matimport, to copy data from an
external source into a MAT-file. The format of the data is custom, that is, it is not one of
the file formats supported by MATLAB.

The matimport.c example:

* Creates variables to read the external data.
* Copies the data into mxArray variables.

* Assigns a variable name to each mxArray. Use these variable names in the MATLAB
workspace.

» Writes the mxArray variables and associated variable names to the MAT-file.
To use the data in MATLAB:

* Build the standalone program matimport.
* Run matimport to create the MAT-file matimport.mat.

4-9

4 Read and Write MATLAB MAT-Files in C/C++ and Fortran

* Open MATLAB.
» Use one of the techniques described in “Save and Load Workspace Variables”.

The following topics describe these steps in detail. To see the code, open the file in the
MATLAB Editor. The C statements in these topics are code snippets shown to illustrate a
task. The statements in the topics are not necessarily sequential in the source file.

Declare Variables for External Data

There are two external data values, a string and an array of type double. The following
table shows the relationship between the variables in this example.

External Data Variable to Read mxArray Variable |MATLAB Variable
External Data Name

Array of type double|extData pVarNum inputArray

String extString pVarChar titleString

The following statements declare the type and size for variables extString and
extData.

#define BUFSIZE 256
char extString[BUFSIZE];
double extData[9];

Use these variables to read values from a file or a subroutine available from your product.
This example uses initialization to create the external data.

const char *extString = "Data from External Device";
double extData[9] = { 1.0, 4.0, 7.0, 2.0, 5.0, 8.0, 3.0, 6.0, 9.0 };

Create mxArray Variables

Functions in the MAT-File API use pointers of type mxArray to reference MATLAB data.
These statements declare pVarNum and pVarChar as pointers to an array of any size or

type.
/*Pointer to the mxArray to read variable extData */
mxArray *pVarNum;

/*Pointer to the mxArray to read variable extString */
mxArray *pVarChar;

4-10

Copy External Data into MAT-File Format with Standalone Programs

To create a variable of the proper size and type, select one of the mxCreate* functions
from the MX Matrix Library.

The size of extData is 9, which the example copies into a 3-by-3 matrix. Use the
mxCreateDoubleMatrix function to create a two-dimensional, double-precision,
floating-point mxArray initialized to 0.

pVarNum = mxCreateDoubleMatrix(3,3,mxREAL);
Use the mxCreateString function to create an mxArray variable for extString.

pVarChar = mxCreateString(extString);

Create MATLAB Variable Names

matimport. c assigns variable names inputArray and titleString to the mxArray
data. Use these names in the MATLAB workspace. For more information, see “View
Contents of MAT-File”.

const char *myDouble
const char *myString

"inputArray";
"titleString";

Read External Data into mxArray Data
Copy data from the external source into each mxArray.

The C memcpy function copies blocks of memory. This function requires pointers to the
variables extData and pVarNum. The pointer to extDatais (void *)extData. To geta
pointer to pvVarNum, use one of the mxGet* functions from the MX Matrix Library. Since
the data contains only real values of type double, this example uses the mxGetPr
function.

memcpy ((void *) (mxGetPr(pVarNum)), (void *)extData, sizeof(extData));

The following statement initializes the pVarChar variable with the contents of
extString.

pVarChar = mxCreateString(extString);

Variables pVarNum and pVarChar now contain the external data.

4-11

4 Read and Write MATLAB MAT-Files in C/C++ and Fortran

Create and Open MAT-File

The matOpen function creates a handle to a file of type MATFile. The following
statements create a file pointer pmat, name the file matimport.mat, and open it for
writing.

MATFile *pmat;

const char *myFile = "matimport.mat";
pmat = matOpen(myFile, "w");

Write mxArray Data to File

The matPutVariable function writes the mxArray and variable name into the file.

status = matPutVariable(pmat, myDouble, pVarNum);
status = matPutVariable(pmat, myString, pVarChar);
Clean Up

To close the file:

matClose(pmat);

To free memory:

mxDestroyArray(pVarNum) ;
mxDestroyArray(pVarChar);

Build the Application

To build the application, use the mex function with the -client engine option.

copyfile(fullfile(matlabroot, 'extern', 'examples', 'eng mat',matimport.c'),"'."',"'f")
mex -v -client engine matimport.c

Create the MAT-File

Run matimport to create the file matimport.mat. Either invoke the program from the
system command prompt, or at the MATLAB command prompt, type:

Imatimport

4-12

See Also

Import Data into MATLAB

Any user with a compatible version of MATLAB can read the matimport.mat file. Start
MATLAB and use the load command to import the data into the workspace.

load matimport.mat

To display the variables, type:

whos
Name Size Bytes C(lass
inputArray 3x3 72 double
titleString 1x43 86 char
See Also

Related Examples
. “Table of MAT-File Source Code Files” on page 4-23

4-13

4 Read and Write MATLAB MAT-Files in C/C++ and Fortran

Create MAT-File in Cor C++

4-14

In this section...

“Create MAT-File in C” on page 4-14

“Create MAT-File in C++"” on page 4-14

Create MAT-File in C

The matcreat.c example illustrates how to use the library routines to create a MAT-file
that you can load into the MATLAB workspace. The program also demonstrates how to
check the return values of MAT-file function calls for read or write failures. To see the
code, open the file in MATLAB Editor.

After building the program, run the application. This program creates mattest.mat, a
MAT-file that you can load into MATLAB. To run the application, depending on your
platform, either double-click its icon or enter matcreat at the system prompt:

matcreat
Creating file mattest.mat...
To verify the MAT-file, at the MATLAB command prompt, type:

whos -file mattest.mat

Name Size Bytes (lass

GlobalDouble 3x3 72 double array (global)
LocalDouble 3x3 72 double array
LocalString 1x43 86 char array

Grand total is 61 elements using 230 bytes

Create MAT-File in C++

The C++ version of matcreat.cis matcreat. cpp. Open the file in MATLAB Editor.

See Also

See Also

Related Examples
. “Table of MAT-File Source Code Files” on page 4-23

4-15

4 Read and Write MATLAB MAT-Files in C/C++ and Fortran

Read MAT-File in C/C++

4-16

The matdgns. ¢ example illustrates how to use the library routines to read and diagnose
a MAT-file. To see the code, open the file in MATLAB Editor.

After building the program, run the application. This program reads the mattest.mat
MAT-file created by the “Create MAT-File in C or C++” on page 4-14 example. To run the
application, depending on your platform, either double-click its icon or enter matdgns at
the system prompt.

matdgns mattest.mat
Reading file mattest.mat...

Directory of mattest.mat:
GlobalDouble
LocalString
LocalDouble

Examining the header for each variable:

According to its header, array GlobalDouble has 2 dimensions
and was a global variable when saved

According to its header, array LocalString has 2 dimensions
and was a local variable when saved

According to its header, array LocalDouble has 2 dimensions
and was a local variable when saved

Reading in the actual array contents:

According to its contents, array GlobalDouble has 2 dimensions
and was a global variable when saved

According to its contents, array LocalString has 2 dimensions
and was a local variable when saved

According to its contents, array LocalDouble has 2 dimensions
and was a local variable when saved

Done

See Also

Related Examples
. “Create MAT-File in Fortran” on page 4-18

See Also

“Table of MAT-File Source Code Files” on page 4-23

4-17

4 Read and Write MATLAB MAT-Files in C/C++ and Fortran

Create MAT-File in Fortran

The matdemol.F example creates the MAT-file, natdemo.mat. To see the code, you can
open the file in MATLAB Editor.

After building the program, run the application. This program creates a MAT-ile,
matdemo.mat, that you can load into MATLAB. To run the application, depending on your
platform, either double-click its icon or type matdemol at the system prompt:

matdemol

Creating MAT-file matdemo.mat ...
Done creating MAT-file

To verify the MAT-file, at the MATLAB command prompt, type:

whos -file matdemo.mat

Name Size Bytes C(lass Attributes
Numeric 3x3 72 double

NumericGlobal 3x3 72 double global
String 1x33 66 char

Note For an example of a Microsoft Windows standalone program (not MAT-file specific),
see engwindemo. c in the matlabroot\extern\examples\eng mat folder.

See Also
Related Examples

. “Read MAT-File in C/C++" on page 4-16
. “Table of MAT-File Source Code Files” on page 4-23

4-18

Read MAT-File in Fortran

Read MAT-File in Fortran

The matdemo?2.F example illustrates how to use the library routines to read the MAT-file
created by matdemol. F and describe its contents. To see the code, open the file in
MATLAB Editor.

After building the program, view the results.

matdemo?2

Directory of Mat-file:
String
Numeric
Getting full array contents:
1
Retrieved String
With size 1-by- 33
3
Retrieved Numeric
With size 3-by- 3

See Also

Related Examples
. “Table of MAT-File Source Code Files” on page 4-23

4-19

4 Read and Write MATLAB MAT-Files in C/C++ and Fortran

Work with mxArrays

4-20

In this section...

“Read Structures from a MAT-File” on page 4-20
“Read Cell Arrays from a MAT-File” on page 4-21

The MAT-File Interface Library lets you access MATLAB arrays (type mxArray) in a MAT-
file. To work directly with an mxArray in a C/C++ application, use functions in the Matrix
Library.

You can find examples for working with the mxArray type in the matlabroot/extern/
examples/mex and matlabroot/extern/examples/mx folders. The following topics
show C code examples, based on these MEX examples, for working with cells and
structures. The examples show how to read cell and structure arrays and display
information based on the type of the mxArray within each array element.

If you create an application from one of the MEX examples, here are some tips for
adapting the code to a standalone application.

* The MAT-ile example, matdgns.c, shows how to open and read a MAT-file. For more
information about the example, see “Read MAT-File in C/C++" on page 4-16.

* The MEX example, explore.c, has functions to read any MATLAB type using the
mxClassID function. For more information about the example, see “Using Data
Types” on page 7-14.

* Some MEX examples use functions, such as mexPrintf, from the “C MEX API”
libmex. You do not need to use these functions to work with an mxArray, but if your
program calls any of them, you must link to the MEX Library. To do this, add
libmex. lib to the link statement.

Read Structures from a MAT-File

The matreadstructarray. c example is based on the analyze structure function in
explore. c. For simplicity, this example only processes real elements of type double;
refer to the explore. c example for error checking and processing other types.

To see the code, open the file in the MATLAB Editor.

After building the program, run the application on the MAT-file, testpatient.mat.

Work with mxArrays

First, create a structure patient and save it.

patient(1l).name = 'John Doe';

patient(1).billing = 127.00;

patient(1l).test = [79 75 73; 180 178 177.5; 172 170 169];
patient(2).name = 'Ann Lane';

patient(2).billing = 28.50;

patient(2).test = [68 70 68; 118 118 119; 172 170 169];

save testpatient.mat

Calculate the total of the billing field.
Imatreadstruct testpatient.mat patient billing

Total for billing: 155.50

Read Cell Arrays from a MAT-File

The matreadcellarray. c example is based on the analyze cell function in
explore.c.

To see the code, open the file in the MATLAB Editor.
After building the program, run the application on the MAT-file, testcells.mat.

First, create three cell variables and save.

cellvar = {'hello'; [2 3 4 6 8 9]; [2; 4; 51};

structvar = {'cell with a structure'; patient; [2; 4; 51};
multicellvar = {'cell with a cell'; cellvar; patient};

save testcells.mat cellvar structvar multicellvar
Display the mxArray type for the contents of cell cellvar.
Imatreadcell testcells.mat cellvar

0: string

1: numeric class
2: numeric class

4-21

4 Read and Write MATLAB MAT-Files in C/C++ and Fortran

See Also

Related Examples
. “Table of MAT-File Source Code Files” on page 4-23

4-22

Table of MAT-File Source Code Files

Table of MAT-File Source Code Files

The matlabroot/extern/examples/eng mat folder contains C/C++ and Fortran
source code for examples demonstrating how to use the MAT-file routines. These
examples create standalone programs. The source code is the same for both Windows,
macOS, and Linux systems.

To build a code example, first copy the file to a writable folder, such as c:\work on your
Windows path.

copyfile(fullfile(matlabroot, 'extern', 'examples', 'eng mat',...
"filename'), fullfile('c:', 'work'))

where filename is the name of the source code file.
For build information, see:

* “MAT-File API Library and Include Files” on page 4-6
* “Build on macOS and Linux Operating Systems” on page 4-25
* “Build on Windows Operating Systems” on page 4-28

Example Description

matcreat.c C program that demonstrates how to use the library routines
to create a MAT-file that you can load into MATLAB.

matcreat.cpp C++ version of the matcreat. c program.

matdgns.c C program that demonstrates how to use the library routines
to read and diagnose a MAT-file.

matdemol.F Fortran program that demonstrates how to call the MATLAB

MAT-file functions from a Fortran program.

matdemo2.F Fortran program that demonstrates how to use the library
routines to read the MAT-file created by matdemol.F and
describe its contents.

matimport.c C program based on matcreat. c used in the example for
writing standalone applications.

matreadstructarray. |C program based on explore.c to read contents of a
C structure array.

4-23

4 Read and Write MATLAB MAT-Files in C/C++ and Fortran

Example Description
matreadcellarray.c |C program based on explore.c to read contents of a cell
array.

For examples using the Matrix Library, see:

* “Tables of MEX Function Source Code Examples” on page 8-24.
* The explore.c example described in “Using Data Types” on page 7-14.

4-24

Build on macOS and Linux Operating Systems

Build on macOS and Linux Operating Systems

In this section...

“Set Run-Time Library Path” on page 4-25
“Build Application” on page 4-26

Set Run-Time Library Path

At run time, you must tell the macOS and Linux operating system where the API shared
libraries reside by setting an environment variable. The macOS or Linux command you
use and the values you provide depend on your shell and system architecture. The
following table lists the name of the environment variable (envvar) and the value

(pathspec) to assign to it. The term matlabroot refers to the root folder of your
MATLAB installation.

Operating envvar pathspec
System
64-bit Apple Mac (DYLD LIBRARY PATH matlabroot/bin/

maci64:matlabroot/sys/os/
maci64

64-bit Linux

LD LIBRARY PATH

matlabroot/bin/
glnxa64:matlabroot/sys/os/

glnxa64

Using the C Shell

Set the library path using the command.

setenv envvar pathspec

Replace the terms envvar and pathspec with the appropriate values from the table. For
example, on a macOS system use:

setenv DYLD LIBRARY_PATH
matlabroot/bin/maci64:matlabroot/sys/os/maci64

You can place these commands in a startup script, such as ~/.cshrc.

4-25

4 Read and Write MATLAB MAT-Files in C/C++ and Fortran

Using the Bourne Shell

Set the library path using the command.

envvar = pathspec:envvar
export envvar

Replace the terms envvar and pathspec with the appropriate values from the table. For
example, on a macOS system use:

DYLD_LIBRARY_PATH=matlabroot/bin/maci64:matlabroot/sys/os/maci64:$DYLD_LIBRARY_PATH
export DYLD_LIBRARY_PATH

You can place these commands in a startup script such as ~/.profile.

For more information, see Append library path to "DYLD LIBRARY PATH" in MAC.

Build Application

To compile and link MAT-file programs, use the mex script with the -client engine
option.

This example shows how to build the example matcreat. c. Use this example to verify
the build configuration for your system. matcreat is C program that demonstrates how
to use the MAT-File API routines to create a MAT-file that you can load into MATLAB.

To build the example, first copy the source code to a writable folder on your path.
copyfile(fullfile(matlabroot, 'extern', 'examples', 'eng mat', 'matcreat.c'),'.','f")
Use the following command to build it.

mex -client engine matcreat.c

To modify the build instructions for your particular compiler, use the -v -n options to

view the current compiler and linker settings. Then, modify the settings using the mex
varname=varvalue option.

See Also

mex

4-26

https://www.mathworks.com/matlabcentral/answers/374930-append-library-path-to-dyld_library_path-in-mac

See Also

Related Examples
. “Create MAT-File in C or C++” on page 4-14

4-27

4 Read and Write MATLAB MAT-Files in C/C++ and Fortran

Build on Windows Operating Systems

To compile and link MAT-file programs, use the mex script with the -client engine
option.

This example shows how to build the example matcreat. c. Use this example to verify
the build configuration for your system. matcreat is C program that demonstrates how
to use the MAT-File API routines to create a MAT-file that you can load into MATLAB. For
more information, see “Create MAT-File in C or C++” on page 4-14.

To build the example, first copy the source code to a writable folder on your path.
copyfile(fullfile(matlabroot, 'extern', 'examples', 'eng mat', 'matcreat.c'),'.','f")
Use the following command to build it.

mex -client engine matcreat.c

To modify the build instructions for your particular compiler, use the -v -n options to
view the current compiler and linker settings. Then, modify the settings using the mex
varname=varvalue option.

See Also

mex

Related Examples
. “Create MAT-File in C or C++” on page 4-14
. “Build Windows Engine Application” on page 11-13

4-28

Share MAT-File Applications

Share MAT-File Applications

MATLAB requires shared library files for building a MAT-file application.
Library File Names by Operating System

Windows Linux Mac
libmat.dll libmat.so libmat.dylib
libmx.d1ll libmx.so libmx.dylib

If you share your MAT-file application with other users, then they must have an installed

version of MATLAB. If you specify other run-time libraries in your build command, then
these libraries must be present on the end-user’s computer.

4-29

Calling Functions in C++ Shared
Libraries from MATLAB

* “System Requirements” on page 5-2

* “Import C++ Library Functionality into MATLAB” on page 5-4

» “Steps to Publish a MATLAB C++ Library Interface” on page 5-6

* “Define and Publish Interface to C++ Shared Library” on page 5-8
* “Define and Publish Interface to Header-Only C++ Library” on page 5-12
» “Display Help for MATLABInterface to C++ Library” on page 5-16
* “Define MATLAB Interface to C++ Library” on page 5-19

* “Call Functions in C++ Shared Library” on page 5-30

* “Limitations to C/C++ Support” on page 5-31

* “Troubleshooting C++ Interface Issues” on page 5-33

* “MATLAB to C++ Data Type Mapping” on page 5-34

* “Handling Exceptions” on page 5-38

* “Errors Parsing Header Files on macOS” on page 5-39

* “Build Error Due to Compile-Time Checks” on page 5-41

5 Calling Functions in C++ Shared Libraries from MATLAB

System Requirements

5-2

A shared library is a collection of classes and functions dynamically loaded by an
application at run time. TheMATLAB interface to a C++ shared library supports libraries
containing functionality defined in C++ header files.

MATLAB supports dynamic libraries on all supported platforms.

Platform Shared Library File Extension
Microsoft Windows Dynamic-link library file .dll

Linux Shared object file .S0

Apple macOS Dynamic shared library .dylib

Compiler Dependencies

Note Not every C++ compiler supports every C++ feature. For example, some compilers
do not support the use of std: : cout.

To build a MATLAB interface library, you need an installed, MATLAB-supported C++
compiler. For an up-to-date list of supported compilers, see Supported and Compatible
Compilers. You must build the interface library using the same compiler that was used to
build the user library. If your library is header-only (does not use a . lib import library),
then you can choose any supported C++ compiler to build the interface library.

Set Run-Time Library Path

The library and its dependencies must be on your system path or run-time search path
(rpath). To verify that the library is on this path, look for the paths in the output of the
following MATLAB command.

syspath = split(getenv('path'),';")
Temporarily Set Run-Time Library Path

To set the run-time library path res temporarily, run one of the following commands
before you start MATLAB.

https://www.mathworks.com/support/compilers.html
https://www.mathworks.com/support/compilers.html

See Also

* Windows Command Processor:

set PATH=res;%PATH%
e Linux C shell:

setenv LD LIBRARY PATH res
* Linux Bourne shell:
LD LIBRARY PATH=res:LD LIBRARY_PATH
export LD LIBRARY_PATH
* macOS C shell:
setenv DYLD_LIBRARY_PATH res
* macOS Bourne shell:

DYLD_ LIBRARY_PATH=res:DYLD LIBRARY_ PATH
export DYLD LIBRARY_ PATH

Note If you use these commands, then you must set the path each time that you open the
operating system prompt. To add the library to the system path permanently, refer to your
operating system documentation.

See Also

More About

. “Steps to Publish a MATLAB C++ Library Interface” on page 5-6
. “Define MATLAB Interface to C++ Library” on page 5-19
. “Call Functions in C++ Shared Library” on page 5-30

External Websites
. Supported and Compatible Compilers
. Append library path to "DYLD LIBRARY PATH" in MAC

5-3

https://www.mathworks.com/support/compilers.html
https://www.mathworks.com/matlabcentral/answers/374930-append-library-path-to-dyld_library_path-in-mac

5 Calling Functions in C++ Shared Libraries from MATLAB

Import C++ Library Functionality into MATLAB

To call functionality in a C++ shared library from MATLAB, first create a MATLAB C++
interface to the library. Someone who creates this interface is called a publisher.
Publishing requires domain knowledge about the library, C++ language skills, and the
library documentation. When you are ready to publish an interface, you need access to:

* The shared run-time library file — .d11 on Windows, .so on Linux, or .dylib on
macOS

* The library header files
* The import library . 1ib file (optional)
* The compiler used to build the library

The MATLAB interface automatically converts C++ function signatures into MATLAB
function signatures. However, some C++ language constructs do not have unique
matches in the MATLAB language. To bridge this gap, MATLAB uses a definition file (with
the . mlx extension) which a publisher creates and modifies to provide missing
information. The publisher must have enough C++ language skills to interpret a function
signature and provide the missing information.

An example of information the publisher needs to define relates to the use of pointers to
pass data to functions. A pointer is a location in memory that indicates the start of a block
of data. To pass this data to MATLAB safely, the publisher must specify the size of the
data. Generally, the function documentation indicates the size of the data, perhaps as an
additional input argument. Using the MATLAB definition file, the publisher specifies the
value, and then MATLAB creates the equivalent MATLAB function signature.

To create a library definition, call the clibgen.generateLibraryDefinition
function. This function creates a file with the . mlx extension. Based on the functionality
you want from the library, you might need to provide information so that MATLAB can
provide the calling syntax for some functionality. For more information, see “Steps to
Publish a MATLAB C++ Library Interface” on page 5-6.

If you decide to provide additional functionality, then start by opening the definition file
with MATLAB Live Editor. For more information, see “Define MATLAB Interface to C++
Library” on page 5-19.

After defining the interface, call the clibgen.buildInterface function to create the
MATLAB interface file packagename. The build function uses a MATLAB-supported C++

See Also

compiler. With this file and the shared library file, any MATLAB end user can call the C++
library functions in MATLAB.

To make this interface available to other MATLAB users, provide them with the MATLAB
interface file packagename. The end user puts the shared library file on the system path
or rpath and the interface file on the MATLAB path. To display function signatures, see
“Display Help for MATLABInterface to C++ Library” on page 5-16. To execute a
command, call clib.packagename. command.

See Also

clibgen.buildInterface| clibgen.generateLibraryDefinition

More About

“System Requirements” on page 5-2

“Steps to Publish a MATLAB C++ Library Interface” on page 5-6
“Define MATLAB Interface to C++ Library” on page 5-19
“Display Help for MATLABInterface to C++ Library” on page 5-16
“Call Functions in C++ Shared Library” on page 5-30

External Websites

Supported and Compatible Compilers

3-5

https://www.mathworks.com/support/compilers.html

5 Calling Functions in C++ Shared Libraries from MATLAB

Steps to Publish a MATLAB C++ Library Interface

This topic outlines steps to take to publish a MATLAB interface to a C++ library. For
examples, see:

* “Define and Publish Interface to C++ Shared Library” on page 5-8
“Define and Publish Interface to Header-Only C++ Library” on page 5-12

1 Review limitations on page 5-31 to MATLAB support for C++ libraries, especially
“Unsupported Data Types” on page 5-36. This information tells you if it is possible
to publish an interface to your library.

2 Determine the functionality you want from the library.

* You can use library examples as a guide.

* Some libraries contain hundreds of classes and functions. To include all
functionality in the interface, examine the constructors and methods in the
definition file (see step 6) for missing information. By identifying specific
functionality, you can limit the scope of the definition step.

3 Identify and locate required files on page 5-4, including dependencies.
* Some libraries are written in C with a wrapper for C++. You need the dependent
C header files and libraries to build the interface.

4 Update the system path on page 5-2. MATLAB uses this information when you call
functions from the interface library. By setting this value before starting MATLAB,
you can publish the interface and test the functionality in a single MATLAB session.

* You can set the path each time that you work on the library or set it permanently
by setting values in the system environment. Do not use MATLAB commands to
set the system path.

5 Start MATLAB. Consider using the Live Script editor to execute the publishing
commands and document the process. A Live Script:

* Records the functionality excluded on page 5-36 from the interface.

* Provides a place to document information outside the MATLAB environment, such

as download information and system-level commands.
Generate the .mlx definition file using clibgen.generatelLibraryDefinition.

Examine the definition file for the functionality you determined in step 2. If necessary,

define missing values on page 5-19 for this functionality.

See Also

8 Build the interface using clibgen.buildInterface. Be sure to add the interface
file folder to the MATLAB path by clicking the link in the build message.

9 Test the MATLAB commands on page 5-30. Once you use a library class or function,
you cannot modify the library definition unless you restart MATLAB and rebuild the
library.

10 Package the interface files and write any end-user documentation.

See Also

clibgen.buildInterface | clibgen.generateLibraryDefinition

More About
. “Define MATLAB Interface to C++ Library” on page 5-19
. “Call Functions in C++ Shared Library” on page 5-30

5-7

5 Calling Functions in C++ Shared Libraries from MATLAB

Define and Publish Interface to C++ Shared Library

This example is built on a Windows platform with the MinGW64 compiler.

Copy the example source files matrixOperations.hpp, matrixOperations. cpp, and
cppshrhelp.hpp to a writable folder on your path.

copyfile(fullfile(matlabroot, 'extern', 'examples', 'cpp _interface', 'matrixOperations.*'),'."','f"')
copyfile(fullfile(matlabroot, 'extern', 'examples', 'cpp _interface', 'cppshrhelp.hpp'),'."','f")

Create a subfolder for the compiler-specific shared library files.

if ~isdir('win64')
mkdir('win64')
if ~isdir(fullfile('win64', 'mingw64'))
mkdir(fullfile('win64', 'mingw64'))
end
end

Copy the library files to the subfolder.

copyfile(fullfile(matlabroot, 'extern', 'examples', 'cpp _interface', 'win64', 'mingw64','*.*'), ...
fullfile('win64', 'mingw64'),'f")

Exit MATLAB and set the operating system path from the DOS system prompt. This
example assumes that you copy the source code example files to the folder
"H:\Documents\MATLAB\publisher\matrixexample', which is the productPath.

The example assumes that you copy the shared library files to the folder 'H:\Documents
\MATLAB\publisher\matrixexample\win64\mingw64 ', which is the libPath.

set PATH=productPath;%PATH%
set PATH=libPath;%PATH%

Restart MATLAB.

Examine the output of this command to verify that the productPath and libPath are on
your system path.

syspath = split(getenv('path'),"';")

:\Documents\MATLAB\publisher\matrixexample\win64\mingw64 '}

g
{'H:\Documents\MATLAB\publisher\matrixexample'}

T

Verify your C++ compiler.

mex -setup c++

Define and Publish Interface to C++ Shared Library

MEX configured to use 'MinGW64 Compiler (C++)' for C++ language compilation.

Set the following values.

% Full path to files in the library

productPath = 'H:\Documents\MATLAB\publisher\matrixexample';
% Header file name

hppFile = 'matrixOperations.hpp';

% Full path to folder containing all header files

hppPath = productPath;

% Full path to folder containing include files

iPath = hppPath;

% Full path to folder containing library files. This example uses the MinGW-w64 compiler.
libPath = fullfile(productPath, 'win64', 'mingw64');

% Library file name

libFile = 'matrixOperations.lib';

Name the interface.
myPkg = 'myPkg';
Generate the library definition.

v = false;
clibgen.generateLibraryDefinition(fullfile(hppPath, hppFile), ...
'"IncludePath', iPath, ...

'Libraries', fullfile(libPath,libFile),...

'PackageName', myPkg, ...

"Verbose',v)

Using MinGW64 Compiler (C++) compiler.

Generated definition file definemyPkg.mlx and data file 'myPkgData.xml' contain definitions for
10 constructs supported by MATLAB.

5 constructs require additional definition. To include these constructs in the interface,

edit the definitions in definemyPkg.mlx.
Build using build(definemyPkg).

To define the missing constructs, click the link to open the definition file
definemyPkg.mlx.

Define the src argument in the C++ class method setMat. Search the definition file for
setMat and uncomment the statements defining it. In this defineArgument statement,
replace <DIRECTION> with "input" and <SHAPE> with "len".

defineArgument(setMatDefinition, "src", "int32", "input", "len");
Define the RetVal output in method getMat. Replace <SHAPE> with "len".

defineQutput(getMatDefinition, "RetVal", "int32", "len");

Define the dest argument in method copyMat. Replace <DIRECTION> with "output"
and <SHAPE> with "len".

5-9

5 Calling Functions in C++ Shared Libraries from MATLAB

5-10

defineArgument (copyMatDefinition, "dest", "int32", "output", "len");

Define the mat argument in function addMat. Replace <SHAPE> with 1.

defineArgument (addMatDefinition, "mat", "clib.matrixOperations.Mat", "input", 1);

Define the arr argument in function updateMatBySize. Replace <DIRECTION> with
"input" and <SHAPE> with "1len".

defineArgument (updateMatBySizeDefinition, "arr", "int32", "input", "len");
Build the interface.

build(definemyPkg)

Building interface file 'myPkgInterface.dll'.

Interface file 'myPkgInterface.dll' built in folder
'"H:\Documents\MATLAB\publisher\matrixexample\myPkg".

To use the library, add the interface file folder to the MATLAB path.

View the contents of the interface.
summary (definemyPkg)

MATLAB Interface to myPkg Library
Class clib.myPkg.Mat

Constructors:
clib.myPkg.Mat()
clib.myPkg.Mat(clib.myPkg.Mat)

Methods:
setMat (int32)
int32 getMat(uint64)
uint64 getlLength()
int32 copyMat(uint64)

No Properties defined

Functions
int32 clib.myPkg.addMat(clib.myPkg.Mat)
clib.myPkg.updateMatByX(clib.myPkg.Mat,int32)
clib.myPkg.updateMatBySize(clib.myPkg.Mat,int32)

Test functions in the interface. For example:

matObj
intArr

clib.myPkg.Mat;
(1,2 3,4,5];

See Also

matObj.setMat(intArr);
retMat = matObj.getMat(5)

retMat 1x5 int32 row vector
1 2 3 4 5

See Also

build | clibgen.generateLibraryDefinition

More About

. “Define MATLAB Interface to C++ Library” on page 5-19
. “Call Functions in C++ Shared Library” on page 5-30

5-11

5 Calling Functions in C++ Shared Libraries from MATLAB

Define and Publish Interface to Header-Only C++ Library

5-12

This example creates a MATLAB interface to a C++ library named school. The library is
defined in the header file school. hpp.

This library defines classes of students and teachers by name and age. After you publish
this library, MATLAB users can call functions in the clib.school package to create
Student and Teacher objects.

Verify Selected C++ Compiler

Verify that you have selected a C++ compiler. For an up-to-date list of supported
compilers, see Supported and Compatible Compilers. This example uses the MinGW64
compiler.

mex -setup cpp

Copy Example Header File

Copy the school. hpp header file to a writable folder on your path. This example
assumes that the current folder is H: \Documents\MATLAB\publisher.

copyfile(fullfile(matlabroot, 'extern', 'examples', 'cpp interface','school.hpp'),'."',"'f")

Generate Definition File

clibgen.generateLibraryDefinition('school.hpp")

Warning: Only header files specified; assuming this is a header-only library.
If library files also need to be specified, use the 'Libraries' option.

Using MinGW64 Compiler (C++) compiler.

Generated definition file defineschool.mlx and data file 'schoolData.xml' contain definitions for
21 constructs supported by MATLAB.

1 constructs require additional definition. To include these constructs in the interface,

edit the definitions in defineschool.mlx.

Build using build(defineschool).

Define Missing Information for C++ Function getName

MATLAB reports that one construct requires additional information (definition). This
means that MATLAB cannot automatically define the signature for one of the functions. To
provide the missing information, click the link to open defineschool.mlx in MATLAB
Live Editor.

https://www.mathworks.com/support/compilers.html

Define and Publish Interface to Header-Only C++ Library

Constructs with missing information are commented. Scroll through the file to locate the
section titled C++ function getName with MATLAB name clib.school.getName.
Uncomment the statements in the getName code section.

Modify this statement.

defineArgument (getNameDefinition, "p", "clib.school.Person", "input", <SHAPE>);

Replace <SHAPE> with the number 1 like this:

defineArgument (getNameDefinition, "p", "clib.school.Person", "input", 1);

Save the definition file.

For more information about including constructs in an interface, see “Define MATLAB
Interface to C++ Library” on page 5-19.

Build Interface and Add to MATLAB Path

build(defineschool)

Building interface file 'schoolInterface.dll'.

Interface file 'schoolInterface.dll' built in folder
'"H:\Documents\MATLAB\publisher\school'.

To use the library, add the interface file folder to the MATLAB path.

Click the interface file folder link to add the interface to the path. Alternatively,
type:

addpath('school")

View Contents of Library
summary (defineschool)
MATLAB Interface to school Library
Class clib.school.Person
Constructors:
clib.school.Person()
clib.school.Person(string,uint64)

clib.school.Person(clib.school.Person)

Methods:
setName(string)

5-13

5 Calling Functions in C++ Shared Libraries from MATLAB

setAge(uint64)
string getName()
uint64 getAge()
No Properties defined
Class clib.school.Teacher
Constructors:
clib.school.Teacher()

clib.school.Teacher(string,uint64)
clib.school.Teacher(clib.school.Teacher)

Methods:
string getName()

No Properties defined
Class clib.school.Student
Constructors:
clib.school.Student()
clib.school.Student(string,uint64)
clib.school.Student(clib.school.Student)

Methods:
string getName()

No Properties defined

Functions

string clib.school.getName(clib.school.Person)

Test Functions

To call functionality in the school interface, use the MATLAB clib package. Type:

clib.school.

then press Tab. The school library has three classes and one function.

Note Once you use a library class or function, you cannot modify the library definition

unless you restart MATLAB and rebuild the library.

5-14

See Also

Create a teacher.

t1l = clib.school.Teacher('Ms. Jones',b24);
Display teacher name.

getName(tl)

ans = "Ms. Jones"

Modify Help Text

You can provide help text for your users. For information, review the topic “Display Help
for MATLABInterface to C++ Library” on page 5-16.

Distribute Interface

To give the interface to a MATLAB user, instruct them to add the schoolInterface.dll
file to a folder named school and add the folder to the MATLAB path. The package name
is clib.school.

See Also

build | clibgen.buildInterface | clibgen.generatelLibraryDefinition

More About
. “Define MATLAB Interface to C++ Library” on page 5-19
. “Display Help for MATLABInterface to C++ Library” on page 5-16

5-15

5 Calling Functions in C++ Shared Libraries from MATLAB

Display Help for MATLABInterface to C++ Library

5-16

Use the following MATLAB functions to view information about the members of a C++
interface.

* help — View classes and functions in a package. When you publish an interface, you
can add descriptive text. For more information, see “Publish Modified Help Text” on
page 5-17.

* methods — View method names for a class.
* methods with '-full' option — View method signatures.

* methodsview — Table representation of method signatures. You might find the
methodsview window easier to use as a reference guide because you do not need to
scroll through the Command Window to find information.

If you created the school interface in the example “Define and Publish Interface to
Header-Only C++ Library” on page 5-12, then you can use it in the following examples.
Assuming the schoolInterface.dl1l file is in the current folder, type:

addpath('.")
Display the classes and package functions.

help clib.school

Classes contained in clib.school:

Person - clib.school.Person Representation of C++ class Person
Teacher - clib.school.Teacher Representation of C++ class Teacher
Student - clib.school.Student Representation of C++ class Student

Functions contained in clib.school:
getName - clib.school.getName Representation of C++ function getName

To display the inputs and outputs for the getName package function, click the getName
link.

clib.school.getName Representation of C++ function getName
inputs
p clib.school.Person
outputs
RetVal string

To display class methods, call the methods function for each class. For example:

methods clib.school.Person

Display Help for MATLABInterface to C++ Library

Methods for class clib.school.Person:
Person eq ge getAge getName gt le 1t ne setAge setName
Methods of clib.school.Person inherited from handle.

To display function signatures, call the methodsview function for each class. For
example:

methodsview clib.school.Person

The function opens a window that displays the methods and information about arguments
and returned values. For example, the signatures for the constructors are:

Return Type Name Arguments
clib.school.Person Person

obj

clib.school.Person Person (name,

obj uint64 scalar age)
clib.school.Person Person (clib.school.Person inputl)
obj

Publish Modified Help Text

When you publish an interface, the clibgen.generateLibraryDefinition function
inserts default text about classes and functions. The help function displays this text to
the user. You can modify the text by editing the definition file.

Note If you have already loaded the clib package, for example, calling help or calling a
class constructor, then you must restart MATLAB to change the interface.

For example, the help for class Person is Representation of C++ class Person.

help clib.school

Classes contained in clib.school:

Person - clib.school.Person Representation of C++ class Person
Teacher - clib.school.Teacher Representation of C++ class Teacher
Student - clib.school.Student Representation of C++ class Student

To modify this text, edit defineschool.mlx. Search for the text Representation of
C++ class Person.

5-17

5 Calling Functions in C++ Shared Libraries from MATLAB

5-18

Modify the "Description" value. Change:

"clib.school.Person
to:
"clib.school.Person

Save the file.

Representation of C++ class Person"

Class defined by name and age"

To rebuild the library, restart MATLAB. Navigate to the folder containing

defineschool.mlx.

delete school*.dll
build(defineschool)
addpath school
clib.school.Person
help clib.school

Classes contained in clib.school:

Person - clib.school.Person
Teacher - clib.school.Teacher
Student - clib.school.Student

Class defined by name and age
Representation of C++ class Teacher
Representation of C++ class Student

build | clibgen.generatelLibraryDefinition

More About

. “Define MATLAB Interface to C++ Library” on page 5-19

Define MATLAB Interface to C++ Library

Define MATLAB Interface to C++ Library

After creating the definition file definelibName.mlx using
clibgen.generatelLibraryDefinition, you might have to modify the contents in
order to include functionality in the interface. Use the Live Editor to modify the file.

Note If library functionality is missing from the definition file, the library might contain
unsupported language features on page 5-31 or unsupported data types on page 5-36.
For details, rerun clibgen.generateLibraryDefinition with the 'Verbose' option
set to true.

Code Suggestions for User-Defined Parameters

MATLAB offers code suggestions for values of user-defined parameters. To activate
suggestions for a specific parameter:
* Uncomment the code defining the function.

* Delete the parameter, including the <> characters. Highlight the parameter, press the
Delete key twice, then the Backspace key.

» Pause to allow the code suggestions to display.

» If the suggestions do not appear, check that the definelibName .mlx file is on your
MATLAB path.

DIRECTION Parameter

In C++, pointer arguments can be used to pass and return data from a function. Use the
DIRECTION parameter to specify if the argument is read-only input, output only, or a
modifiable input argument.

The DIRECTION parameter has one of these values.
* 1input - Input argument only

If a pointer argument is used to pass data to the function, then it must appear as an
input argument in the MATLAB signature.

* output - Output argument only

5-19

5 Calling Functions in C++ Shared Libraries from MATLAB

5-20

If a pointer argument is used to retrieve data from the function, then it must appear as
an output argument in the MATLAB signature.

* inputoutput - Input and output argument

If a pointer argument is used to both pass and return data, then it must appear as both
an input argument and an output argument.

For example, suppose that a C++ function passData has the following signature. The
argument data might be an input to the function, the return value of the function, or
input that the function modifies and returns. The documentation of the function tells you
how the function uses the argument data.

void passData(double *data);

Assuming data is a scalar double value, the following table shows the MATLAB signature
based on its role.

C++ Signature MATLAB Signature

// Pass data to C++ % Set DIRECTION = input
void passData(double pakdigta(data)

// Return data from CG#+5et DIRECTION = output
void passData(double pdiatta]) ;= passData()

// Pass data to C++ andSaietiulrfEGhEDMod iifrimdt matuet
void passData(double pditta)) ;= passData(data)

SHAPE Parameter

In C++, pointer arguments are used for both scalar data and array data. To use a pointer
as an array, dimension information is required to convert the array between C++ and
MATLAB. The SHAPE parameter specifies the dimensions for the pointer.

The following examples of constructs defined in the cppUseCases. hpp header file show
you how to specify the shape of an argument. In these tables, the descriptions for the
functions in the C++ Signature column are based on assumed knowledge of the
arguments. The signature itself does not provide this information.

Define MATLAB Interface to C++ Library

Define Pointer Argument to Fixed Scalar

C++ Signature defineArgument Values

The input to function |For argument in, set SHAPE to 1.
readScalarPtrisa

. N defineArgument(readScalarPtrDefinition, "in", "int32", "input", 1);
scalar pointer in.

void readScalarPtr(cpnst int * in)

The input to function |For argument in, set SHAPE to 1.
readScalarPtrisa
scalar pointer to class
ns::Myclass2.

defineArgument(readScalarPtrDefinition, "in", "clib.cppUseCases.ns.myclass2", |"input", 1);

void readScalarPtr(cpnst ns::Myclass2 * in)

5-21

5 Calling Functions in C++ Shared Libraries from MATLAB

5-22

Define Pointer Argument

C++ Signature

defineArgument Values

The input to function
readMatrix1DPtr is
a pointer to an integer
array of length m.

void readMatrix1DPtr

For argument mat, set SHAPE to argument m.

defineArgument(readMatrixldPtrDefinition, "mat", "int32", "input", "m")

(const int * mat,size t m)

The input to function
readMatrix1DPtrFi
xedSize is a pointer
to a fixed-length array
mat.

void readMatrix1DPtr

For argument mat, set SHAPE to a fixed integer, such as 5.

defineArgument(readMatrixldPtrFixedSizeDefinition, "mat", "int32", "input", 5);

FixedSize(const int * mat)

The input to function
readMatrix2DPtr is
a pointer to a two-
dimensional integer
matrix mat of size m-
by-n.

void readMatrix2DPtr
size t m,size t

For argument mat, set SHAPE to ["m","n"].

defineArgument(readMatrix2dPtrDefinition, "mat", "int32", "input", ["m","n"])]

(const int * mat,
n)

The input to function
readMatrix2DPtrFi
xedSize is a pointer
to a two-dimensional
matrix mat of fixed
dimensions.

For argument mat, set SHAPE to a fixed integer, such as 6.

defineArgument (readMatrix2dPtrFixedSizeDefinition, "mat", "int32", "input", 6);

void readMatrix2DPtr

FixedSize(const int * mat)

Define MATLAB Interface to C++ Library

C++ Signature

defineArgument Values

The input to function
readMatrix3DPtr is

For argument mat, set SHAPE to ["m", "n", "p"].

X defineArgument (readMatrix3dPtrDefinition, "mat", "int32", "input", ["m","n","gd"
a pointer to a three-
dimensional matrix
mat of size m-by-n-by-
p.
void readMatrix3DPtr|(const int * mat,
size t m,size t ph,size t p)
Define Array Argument
C++ Signature defineArgument Values
The input to function |For argument mat, set SHAPE to length m.
readMat rlX]'DArr 18 defineArgument (readMatrixldArrDefinition, "mat", "int32", "input", "m");

a one-dimensional
array mat of length m.

void readMatrixldArr

(int const [] mat,int m)

Define Output Pointer Argument

C++ Signature

defineArgument Values

The input to function
getRandomValues is
a pointer to an array of
length len which
returns a pointer
argument as output.

int * getRandomValue

For the return value RetVal, set SHAPE to argument len.

defineOutput(getRandomValuesDefinition, "RetVal", "int32", "len");

5(size_t len)

The output argument
of function
getRandomValuesFi
xedSize is a pointer
to a fixed-length array.

int * getRandomValue

For the return value RetVal, set SHAPE to an integer, such as 5.

defineOutput(getRandomValuesFixedSizeDefinition, "RetVal", "int32", 5);

sFixedSize()

5-23

5 Calling Functions in C++ Shared Libraries from MATLAB

5-24

Define Scalar Object Argument

C++ Signature

defineArgument Values

The input to function
addClassByPtris
pointer to class
ns::Myclass?2.

double addClassByPtr

For the myc1 argument, set SHAPE to 1.

defineArgument(addClassByPtrDefinition,

(const ns::Myclass2 * mycl)

"mycl", "clib.cppUseCases.ns.myclass2'],

The input to function
updateClassByPtris
a pointer to class
ns::myclass2.

void updateClassByPt
double a,short b

For argument myc1, set SHAPE to 1.

defineArgument (updateClassByPtrDefinition, "mycl","clib.cppUseCases.ns.myclass?

r(ns::myclass2 * mycl,
, long c)

The input to function
readClassByPtrisa
pointer to class
ns::myclass2.

void readClassByPtr(

For argument myc1, set SHAPE to 1.

ns::myclass2 * mycl)

The input to function
fillClassByPtrisa
pointer to class
ns::myclass?2.

void fillClassByPtr(
double a,short b

For argument myc1l, set SHAPE to 1.

defineArgument (fillClassByPtrDefinition,

ns::myclass2 * mycl,
, long c)

defineArgument (readClassByPtrDefinition, "mycl", "clib.cppUseCases.ns.myclassq",

"mycl", "clib.cppUseCases.ns.myclassq",

"input", 1);

", "inputoutput

"input", 1)

"input", 1)

Define MATLAB Interface to C++ Library

Define Matrix Argume

nt

C++ Signature

defineArgument Values

The input to function
updateMatrix1DPtr
ByX is a pointer to an
integer vector of
length m. The
argument X modifies
the input argument.

void updateMatrix1DP

For argument mat, set DIRECTION to inputoutput and SHAPE
tom.

defineArgument (updateMatrixldPtrByXDefinition, "mat", "int32",

trByX(int * mat,int m,int x)

The input to function
updateMatrix1DArr
ByX is a reference to
an integer array of
length m. The input
argument is modified
by x.

void updateMatrix1DA
int m,int x)

For argument mat, set DIRECTION to inputoutput and SHAPE
tom.

defineArgument (updateMatrix1dArrByXDefinition, "mat", "int32",

rrByX(int [] mat,

The input to function
addValuesByPtrisa
pointer to an integer
vector of length len.
The function does not
modify the input
argument.

int addValuesByPtr(i

For argument mat, set DIRECTION to input and SHAPE to len.

defineArgument(addValuesByPtrDefinition, "mat", "int32", "input", "len");

nt * mat,size t len)

The input to function
addValuesByArris a
reference to an integer
array of length len.
The function does not
modify the input
argument.

int addValuesByArr(i

For argument mat, set DIRECTION to input and SHAPE to len.

defineArgument(addValuesByArrDefinition, "mat", "int32", "input", "len");

nt [] mat,size t len)

5-25

"inputoutput", |"m");

"inputoutput", |"m"

5 Calling Functions in C++ Shared Libraries from MATLAB

5-26

C++ Signature

defineArgument Values

The function
fillRandomValuesT
oPtr creates an
integer vector of
length len and returns
a reference to the
vector.

void fillRandomValue

For argument mat, set DIRECTION to output and SHAPE to
len.

defineArgument (fillRandomValuesToPtrDefinition, "mat",

sToPtr(int * mat,size t 1len)

"int32", "output", "len"

The function
fillRandomValuesT
OArr creates an
integer vector of
length len and returns
a reference to the
vector.

void fillRandomValue
size t len)

For argument mat, set DIRECTION to output and SHAPE to
len.

defineArgument (fillRandomValuesToArrDefinition, "mat",

sToArr(int [] mat,

"int32", "output", "len"

Define MATLAB Interface to C++ Library

Define String Arguments

C++ Signature

defineArgument Values

The input to function
getStringCopyis a
null-terminated string.

const char * getStri

For argument str, set MLTYPE to string and SHAPE to
nullTerminated.

defineArgument(getStringCopyDefinition, "str", "string", "input", "nullTerming

ngCopy(const char * str)

The input to function
readCharArray is a
string specified by
length len.

void readCharArray(c
size t len)

For argument chArray, set MLTYPE to char and SHAPE to len.

defineArgument(readCharArrayDefinition, "chArray", "char", "input", "len");

onst char * chArray,

The input to function
readInt8Array is an
array of type int8 and
length len.

void readInt8Array(c
size t len)

For argument int8Array, set MLTYPE to int8 and SHAPE to
len.

defineArgument(readInt8ArrayDefinition, "int8Array", "int8", "input", "len");

ponst char * int8Array,

The return value for
function
getRandomCharScal
ar is a scalar of
characters.

const char * getRand

For return value RetVal, set MLTYPE to char and SHAPE to 1.

defineOutput (getRandomCharScalarDefinition, "RetVal", "char", 1)

pmCharScalar()

The type of the return
value for function
getRandomInt8Scal
aris ints8.

const char * getRand

For return value RetVal, set MLTYPE to int8 and SHAPE to 1.

defineOutput(getRandomInt8ScalarDefinition, "RetVal", "int8", 1)

pmInt8Scalar()

5-27

ted");

5 Calling Functions in C++ Shared Libraries from MATLAB

C++ Signature

defineArgument Values

The function
updateCharArray
updates the input
argument chArray.
The length of chArray
is len.

void updateCharArray

size t len)

For argument chArray, set DIRECTION to inputoutput and
SHAPE to len.
defineArgument (updateCharArrayDefinition,

"chArray", "int8",

(char * chArray,

"inputoutput", "

Define Typed Pointer Arguments

C++ Signature

defineArgument Values

The input to function
useTypedefPtrisa
pointer to typedef
intDataPtr.

void useTypedefPtr(i

intDataPtris
defined as:

typedef intl6 t intD

For argument inputl, set DIRECTION to input and SHAPE to
1.
defineArgument (useTypedefPtrDefinition,

"inputl", "int16", "input", 1);

ntDataPtr inputl)

ata;
tDataPtr;

typedef intData * in

MLTYPE Parameter

MATLAB automatically converts C++ types to MATLAB types, as described in “MATLAB
to C++ Data Type Mapping” on page 5-34. If the C++ type for the argument is a string,

then use these options t

o choose values for the MLTYPE and SHAPE arguments.

C++ Type MLTYPE |Options for SHAPE
char * int8 Scalar value
Array of scalar values
const char *|char Scalar value
Array of scalar values
string "nullTerminated"

5-28

See Also

Build Library and Review Contents

Build library libName.

build(definelibName)
addpath libName

Display the functionality in the library.

libDef = definelibName;
summary (1ibDef)

Note Saving LibraryDefinition object LibDef into a MAT-file is not supported.

See Also

build | clibgen.LibraryDefinition

More About

. “Limitations to C/C++ Support” on page 5-31
. “Unsupported Data Types” on page 5-36

5-29

5 Calling Functions in C++ Shared Libraries from MATLAB

Call Functions in C++ Shared Library

5-30

To call a function in a C++ library, use the MATLAB clib package. MATLAB
automatically loads the library when you type:

clib. fully-qualified-class-member

After MATLAB loads the library, you can use tab completion to view the members of the
clib package.

For example, to call function funcname in library Libname, type the following statement.

funcname defines the input arguments argl, arg2, ... and the output argument
retVal.
retVal = clib.libname.funcname(argl, arg2, ...)

The shared library file and its dependencies, if any, must be on your system path or run-
time search path (rpath). For more information, see “Set Run-Time Library Path” on page
5-2. Put the MATLAB interface file on the MATLAB path.

See Also

More About

. “System Requirements” on page 5-2

. “Display Help for MATLABInterface to C++ Library” on page 5-16
. “MATLAB to C++ Data Type Mapping” on page 5-34

Limitations to C/C++ Support

Limitations to C/C++ Support

You can create a MATLAB interface to shared libraries based on C++98 and commonly
occurring C++11 features. However, if a library contains the following language features
or any “Unsupported Data Types” on page 5-36, then the functionality is not included in
the MATLAB interface to the library.

const objects

Overloaded operator functions

Creating objects of classes in the std namespace

Pointers or arrays of std: :string

Function and class templates with incomplete or no instantiations
Unresolved forward declarations

Unnamed namespaces and classes

move constructor

Passing nullptr to C++ functions or data members
Passing and returning Unicode® text from C++

Arrays of C++ class objects

Function objects (functors)

Default arguments with direction specified as OUT.
Pointer, array, and reference data members

Static data members

Pointers or references to enumerations

Variadic functions

Properties with the same name in derived class
Namespace aliases. Use original namespace name instead.

Namespaces, member functions, and properties with C++ names that are invalid in
MATLAB

Multilevel pointers
void *

Function pointer
Preprocessor directives

5-31

5 Calling Functions in C++ Shared Libraries from MATLAB

5-32

* Global variables
» Bit fields
¢ Unions

Smart Pointer Semantics

MATLAB does not support operator overloads and move semantics on smart pointer
objects. Smart pointers can be used only through supported member functions, which
might restrict their effectiveness.

Limits on Forward Declaration for Functions

All parameters passed as value types must be defined in a header file. If you have a
forward declaration for a type, make sure that MATLAB finds the definition in one of the
header files used to create the interface. Otherwise, MATLAB drops the functionality.

For example, in this code, MATLAB cannot support myFunc unless you include a header
file defining MyClass.

class MyClass;
double myFunc(MyClass);

Exception Object

A library C++ exception object is not available in MATLAB. However, user exception
messages are available.

See Also

More About
. “Unsupported Data Types” on page 5-36

Troubleshooting C++ Interface Issues

Troubleshooting C++ Interface Issues

Why Is a Function Missing from the Definition File?
If a library contains any unsupported language features on page 5-31 or any unsupported

data types on page 5-36, then the functionality is not included in the library definition
file.

MATLAB Did Not Create .mlx Definition File
Sometimes, the content of library files exceeds limits which causes MATLAB to create

an .m file instead of an . mlx file. Search your output folder for a definition file of the form
definelibName.m and edit the contents as you would the .mlx version.

Cannot Open .mlx Definition File
If you have issues opening the .mlx file, then you can use the corresponding

definelibName.m file instead. First delete the .mlx file, then open the .m file in
MATLAB Editor.

See Also

More About

. “Limitations to C/C++ Support” on page 5-31
. “Unsupported Data Types” on page 5-36

5-33

5 Calling Functions in C++ Shared Libraries from MATLAB

MATLAB to C++ Data Type Mapping

The following table shows how MATLAB data types correspond to fixed-width C++ types.
Fixed-Width Data Types

C Exact-Width Equivalent MATLAB Type
Integer Types

int8 t int8

uint8 t uint8

intl6e t intl6

uintle t uintle

int32 t int32

uint32 t uint32

int64 t int64

uinte4 t uinte4

C Floating Point [Equivalent MATLAB Type
Types

float single

double double

Other C Types Equivalent MATLAB Type
bool logical

Non-Fixed-Width Integer Types

MATLAB maps non-fixed-width types to the corresponding fixed-width C types, based on
the compiler used.

MATLAB supports the following non-fixed-width C integer types.

* short

* short int

* signed short

* signed short int

5-34

MATLAB to C++ Data Type Mapping

* unsigned short

* unsigned short int
e int

* signed int

* unsigned

* unsigned int

+ long

* signed long

* signed long int

* unsigned long

* unsigned long int
* long long

String and Character Types

The following table shows how MATLAB converts string and char data returned from C

++ into MATLAB types.

C++ String and Character Types

C++ Character |[Equivalent MATLAB Type
Types

char int8
const char *

signed char int8

unsigned char |uint8

C++ String Equivalent MATLAB Type
Types

std::string string, ASCII characters only

const char * string

5-35

5 Calling Functions in C++ Shared Libraries from MATLAB

5-36

User-Defined Types

C++ User-Defined Types Equivalent MATLAB Type
struct StructName libname.StructName
enum EnumName libname .EnumName

Unsupported Data Types

If the data type of an argument to a class constructor, method, or function is one of these
types, or if the library contains any unsupported language features on page 5-31, then the
functionality is not included in the MATLAB interface to the library.

Any type with a size greater than 64 bits, for example, Long double
wchar t

charle t

char32 t

intptr_t

uintptr t

union

Implicit and explicit type casting

Multilevel pointers, such as type** and type***
Function pointers

Opaque pointer types

Troubleshooting Messages

MATLAB reports on constructs that use unsupported types. To view these messages, use
the 'Verbose' option in the clibgen.generatelLibraryDefinition or
clibgen.buildInterface functions.

For example, suppose that functionName in ClassName is defined in HeaderFile.h. If

an argument to functionName is of type wchar t, then MATLAB does not add
functionName to the definition file. In addition, if 'Verbose' is true, then
clibgen.generatelLibraryDefinition displays the following message.

Did not add member 'functionName' to class 'ClassName' at HeaderFile.h:290.
'wchar t' is not a supported type.

See Also

See Also

clibgen.buildInterface| clibgen.generateLibraryDefinition

5-37

5 Calling Functions in C++ Shared Libraries from MATLAB

Handling Exceptions

MATLAB supports std: :exception and its subclasses.

Limitations

A library C++ exception object is not available in MATLAB. However, user exception
messages are available.

5-38

Errors Parsing Header Files on macOS

Errors Parsing Header Files on macOS

The clibgen.generatelLibraryDefinition and clibgen.buildInterface
functions fail when parsing some header files on the macOS platform.

Suppose that you have two header files. Header file simplel.hpp includes a standard
header such as iostream or vector. For example:

#ifndef SIMPLE1 HPP
#define SIMPLE1 HPP

#include <vector>

// class definitions
// functions
#endif

Header file simple2.hpp includes simplel. hpp. For example:
#include "simplel.hpp"

// class definitions based on simplel.hpp content
// other functionality

This call to clibgen.generatelLibraryDefinition generates errors parsing header
file on macOS.

clibgen.generateLibraryDefinition(["simplel.hpp","simple2.hpp"],"PackageName","simple")

To include this content in the library, create a wrapper header file with the contents of
simplel.hpp and simple2.hpp. For example, create wrapsimple.hpp with these
statements:

#ifndef SIMPLE1_HPP
#define SIMPLE1_HPP

#include <vector>

// class definitions

// functions

#endif

// Start of simple2.hpp content. Do not add the include simplel.hpp statement.

// class definitions based on simplel.hpp content
// other functionality

Create the library definition definesimple.mlx.

5-39

5 Calling Functions in C++ Shared Libraries from MATLAB

clibgen.generatelLibraryDefinition("wrapsimple.hpp","PackageName","simple")

See Also

clibgen.buildInterface| clibgen.generatelLibraryDefinition

5-40

Build Error Due to Compile-Time Checks

Build Error Due to Compile-Time Checks

Compile-time assertions in a C++ shared library, such as static _assert, are not
supported, but a construct with the assertion might be instantiated. To avoid an error
when building a MATLAB interface to the library, comment the lines in the definition
file that define the construct before building the interface.

See Also
build

More About

. “Steps to Publish a MATLAB C++ Library Interface” on page 5-6
. “Define MATLAB Interface to C++ Library” on page 5-19

5-41

Calling Functions in C Shared
Libraries from MATLAB

* “Call C Functions in Shared Libraries” on page 6-2

* “Invoke Library Functions” on page 6-4

* “View Library Functions” on page 6-5

* “Load and Unload Library” on page 6-6

* “Limitations to Shared Library Support” on page 6-7
* “Limitations Using Structures” on page 6-11

* “Loading Library Errors” on page 6-13

* “No Matching Signature Error” on page 6-14

* “MATLAB Terminates Unexpectedly When Calling Function in Shared Library”
on page 6-15

* “Pass Arguments to Shared C Library Functions” on page 6-16
* “Shared Library shrlibsample” on page 6-22

» “Pass String Arguments Examples” on page 6-23
* “Pass Structures Examples” on page 6-25

* “Pass Enumerated Types Examples” on page 6-31
» “Pass Pointers Examples” on page 6-33

* “Pass Arrays Examples” on page 6-38

* “Iterate Through an Array” on page 6-42

* “Pointer Arguments” on page 6-45

* “Structure Arguments” on page 6-48

+ “Explore libstruct Objects” on page 6-50

» “MATLAB Prototype Files” on page 6-51

6 Calling Functions in C Shared Libraries from MATLAB

Call C Functions in Shared Libraries

6-2

A shared library is a collection of functions dynamically loaded by an application at run
time. This MATLAB interface supports libraries containing functions defined in C header
files. To call functions in C++ libraries, see the interface described in “C++ Libraries”.

MATLAB supports dynamic linking on all supported platforms.

Platform Shared Library File Extension
Microsoft Windows dynamic link library file .dll

Linux shared object file .S0

Apple macOS dynamic shared library .dylib

A shared library needs a header file, which provides signatures for the functions in the
library. A function signature, or prototype, establishes the name of the function and the
number and types of its parameters. Specify the full path of the shared library and its
header file.

You need an installed MATLAB-supported C compiler. For an up-to-date list of supported
compilers, see Supported and Compatible Compilers.

MATLAB accesses C routines built into external, shared libraries through a command-line
interface. This interface lets you load an external library into MATLAB memory and
access functions in the library. Although types differ between the two language
environments, usually you can pass types to the C functions without converting. MATLAB
converts for you.

Details about using a shared library are in these topics.
* “Load and Unload Library” on page 6-6

* “View Library Functions” on page 6-5

* “Invoke Library Functions” on page 6-4

If the library function passes arguments, you need to determine the data type passed to
and from the function. For information about data, see these topics.

* “Pass Arguments to Shared C Library Functions” on page 6-16
* “Manually Convert Data Passed to Functions” on page 6-20

https://www.mathworks.com/support/compilers.html

See Also

* “Pointer Arguments” on page 6-45
* “Structure Arguments” on page 6-48

When you are finished working with the shared library, it is important to unload the
library to free memory.

See Also
calllib | libfunctions | loadlibrary

More About
. “C and MATLAB Equivalent Types” on page 6-16
. “Limitations to Shared Library Support” on page 6-7

6-3

6 Calling Functions in C Shared Libraries from MATLAB

Invoke Library Functions

After loading a shared library into the MATLAB workspace, use the calllib function to
call functions in the library. The syntax for calllib is:

calllib('libname', 'funcname',argl,...,argN)

Specify the library name, function name, and, if required, any arguments that get passed
to the function.

See Also

More About
. “Pass Arguments to Shared C Library Functions” on page 6-16

6-4

View Library Functions

View Library Functions

To display information about library functions in the MATLAB Command Window, use the
libfunctions command.

To view function signatures, use the - full switch. This option shows the MATLAB syntax
for calling functions written in C. The types used in the parameter lists and return values
are MATLAB types, not C types. For more information on types, see “C and MATLAB
Equivalent Types” on page 6-16.

To display information about library functions in a separate window, use the
libfunctionsview function. MATLAB displays the following information:

Heading Description

Return Type Types the method returns
Name Function name

Arguments Valid types for input arguments
See Also

More About

. “C and MATLAB Equivalent Types” on page 6-16

6 Calling Functions in C Shared Libraries from MATLAB

Load and Unload Library

6-6

To give MATLAB access to functions in a shared library, first load the library into memory.
After you load the library, you can request information about library functions and call
them directly from the MATLAB command line.

To load a shared library into MATLAB, use the loadlibrary function. The most common
syntax is:

loadlibrary('shrlib', 'hfile')

where shrlib is the shared library file name, and hfile is the name of the header file
containing the function prototypes.

Note The header file provides signatures for the functions in the library and is a required
argument for loadlibrary.

When you are finished working with the shared library, it is important to unload the
library to free memory.

See Also
loadlibrary | unloadlibrary

Limitations to Shared Library Support

Limitations to Shared Library Support

In this section...
“MATLAB Supports C Library Routines” on page 6-7
“Loading C++ Libraries” on page 6-7

“Limitations Using printf Function” on page 6-7

“Bit Fields” on page 6-8

“Enum Declarations” on page 6-8

“Unions Not Supported” on page 6-9

“Compiler Dependencies” on page 6-9

“Limitations Using Pointers” on page 6-9

“Functions with Variable Number of Input Arguments Not Supported” on page 6-10

MATLAB Supports C Library Routines

The MATLAB shared library interface supports C library routines only. Most professionally
written libraries designed to be used by multiple languages and platforms work fine. For
more information, see “Call C Functions in Shared Libraries” on page 6-2.

Many noncommerecial libraries or libraries that have only been tested from C++ have

interfaces that are not usable and require modification or an interface layer. In this case,
we recommend using MEX files.

Loading C++ Libraries
The shared library interface does not support C++ classes or overloaded functions

elements. Use the MATLAB C++ interface instead. For more information, see “C++
Libraries”.

Limitations Using printf Function

MATLAB does not display the output of the C printf function to the command window.

6 Calling Functions in C Shared Libraries from MATLAB

6-8

Bit Fields

You can modify a bit field declaration by using type int or an equivalent. For example, if
your library has the following declared in its header file:

int myfunction();

struct mystructure

{
/* note the sum of fields bits */
unsigned fieldl :4;
unsigned field2 :4;

b

edit the header file and replace it with:
int myfunction();

struct mystructure

{
/* field 8 bits wide to be manipulated in MATLAB */
/* A char is 8 bits on all supported platforms */
char allfields;

b

After editing the source code, rebuild the library. It is then possible to access the data in
the two fields using bit masking in MATLAB.

Enum Declarations

char definitions for enum are not supported. In C, a char constant, for example 'A"', is
automatically converted to its numeric equivalent (65). MATLAB does not convert
constants. To use this type of enum, edit the header file by replacing 'A"' with the number
65 (int8('A') == 65). For example, replace:

enum Enuml {ValA='A',ValB='B'};
with:
enum Enuml {ValA=65,ValB=66};

then rebuild the library.

Limitations to Shared Library Support

Unions Not Supported

Unions are not supported. As a workaround, modify the source code taking out the union
declaration and replacing it with the largest alternative. Then, to interpret the results,
write MATLAB code as needed. For example, edit the source code and replace the
following union:

struct mystruct

{
union
{
struct {char bytel,byte2;};
short word;
};
b
with:
struct mystruct
{
short word;
b

where on a little-endian based machine, bytel is mod (f,256), byte2 is /256, and
word=byte2*256+bytel. After editing the source code, rebuild the library.

Compiler Dependencies

Header files must be compatible with the supported compilers on a platform. For an up-
to-date list of supported compilers, see Supported and Compatible Compilers. You cannot
load external libraries with explicit dependencies on other compilers.

Limitations Using Pointers
Function Pointers

The shared library interface does not support library functions that work with function
pointers.

Multilevel Pointers

Limited support for multilevel pointers and structures containing pointers. Using inputs
and outputs and structure members declared with more than two levels of indirection is

6-9

https://www.mathworks.com/support/compilers.html

6 Calling Functions in C Shared Libraries from MATLAB

6-10

unsupported. For example, double ***outp translated to doublePtrPtrPtr is not
supported.

Functions with Variable Number of Input Arguments Not
Supported

The shared library interface does not support library functions with variable number of
arguments, represented by an ellipsis (. . .).

You can create multiple alias functions in a prototype file, one for each set of arguments

used to call the function. For more information, see “MATLAB Prototype Files” on page 6-
51.

See Also

More About

. “Limitations Using Structures” on page 6-11

Limitations Using Structures

Limitations Using Structures

MATLAB Returns Pointers to Structures

MATLAB returns pointers to structures. Return by value is not supported.

Structure Cannot Contain Pointers to Other Structures

Nested structures or structures containing a pointer to a structure are not supported.
However, MATLAB can access an array of structures created in an external library.

Requirements for MATLAB Structure Arguments

When you pass a MATLAB structure to an external library function, the field names must
meet the following requirements.
* Every MATLAB field name must match a field name in the library structure definition.

» MATLAB structures cannot contain fields that are not in the library structure
definition.

» If a MATLAB structure contains fewer fields than defined in the library structure,
MATLAB sets undefined fields to zero.

* Field names are case-sensitive. For example, suppose that library mylib contains
function myfunc with the following structure definition.

struct S {
double len;

};

The field name is len. If you pass a structure to myfunc with the field name Len,
MATLAB displays an error.

S.Len = 100;
calllib('mylib"', 'myfunc',S)

Requirements for C struct Field Names
When MATLAB loads a C struct definition, the field names in MATLAB are not case-

sensitive. For example, when you load a library containing the following definition,
MATLAB does not create two fields.

6-11

6 Calling Functions in C Shared Libraries from MATLAB

struct S {
double Num;
double num;

+

See Also

More About
. “Limitations to Shared Library Support” on page 6-7

6-12

Loading Library Errors

Loading Library Errors

Errors occur when the shared library is not a valid library. MATLAB displays messages
similar to the following:

There was an error loading the library "F:\mylibs\testlib.dll"
"F:\mylibs\testlib.dll' is not a valid shared library.

or

There was an error loading the library "/home/myname/testlib.so"
'/home/myname/mylibs/testlib.so' has different architecture than the host.

If the library has dependencies which MATLAB cannot find, then MATLAB displays
messages as described in “Invalid MEX File Errors” on page 7-76.

To find library dependencies on Windows systems, use the third-party product
Dependency Walker. This free utility scans Windows modules and builds a hierarchical
tree diagram of all dependent modules. For each module found, it lists all the functions
exported by that module, and which of those functions are called by other modules. See
How do I determine which libraries my MEX-file or stand-alone application requires? for
information on using the Dependency Walker.

6-13

https://www.mathworks.com/matlabcentral/answers/92362-how-do-i-determine-which-libraries-my-mex-file-or-stand-alone-application-requires

6 Calling Functions in C Shared Libraries from MATLAB

No Matching Signature Error

6-14

This error occurs when you call a function without the correct input or output arguments,
or if there is an error in the function signature in the header file.

For example, the function signature for the addStructByRef function in shrlibsample
is:

[double, c_structPtr] addStructByRef(c structPtr)
Load the library.

addpath(fullfile(matlabroot, 'extern', 'examples', 'shrlib"'))
loadlibrary('shrlibsample")

Create a structure, and call addStructByRef.

struct.pl = 4;
struct.p2 = 7.3;
struct.p3 = -290;

If you call the function without the input argument, MATLAB displays the error message.
[res,st] = calllib('shrlibsample', 'addStructByRef")

Error using calllib
No method with matching signature.

The correct call is:

[res,st] = calllib('shrlibsample', 'addStructByRef',6struct)

See Also

calllib | libfunctions

MATLAB Terminates Unexpectedly When Calling Function in Shared Library

MATLAB Terminates Unexpectedly When Calling
Function in Shared Library

Some shared libraries, compiled as Microsoft Windows 32-bit libraries, use a calling
convention that is incompatible with the default MATLAB calling convention. The default
calling convention for MATLAB and for Microsoft C and C++ compilers is cdecl. For
more information, see the MSDN® Calling Conventions article.

If your library uses a different calling convention, create a Lloadlibrary prototype file
and modify it with the correct settings, as described in MATLAB Answers™ article Why
does MATLAB crash when I make a function call on a DLL in MATLAB 7.6 (R2008a)?

See Also
loadlibrary

More About
. “MATLAB Prototype Files” on page 6-51

External Websites
. Calling Conventions

6-15

https://msdn.microsoft.com/en-us/library/k2b2ssfy.aspx
https://www.mathworks.com/matlabcentral/answers/96578-why-does-matlab-crash-when-i-make-a-function-call-on-a-dll-in-matlab-7-6-r2008a
https://www.mathworks.com/matlabcentral/answers/96578-why-does-matlab-crash-when-i-make-a-function-call-on-a-dll-in-matlab-7-6-r2008a
https://msdn.microsoft.com/en-us/library/k2b2ssfy.aspx

6 Calling Functions in C Shared Libraries from MATLAB

Pass Arguments to Shared C Library Functions

6-16

In this section...

“C and MATLAB Equivalent Types” on page 6-16
“How MATLAB Displays Function Signatures” on page 6-19
“NULL Pointer” on page 6-19

“Manually Convert Data Passed to Functions” on page 6-20

C and MATLAB Equivalent Types

The shared library interface supports all standard scalar C types. The following table
shows these C types with their equivalent MATLAB types. MATLAB uses the type from the
right column for arguments having the C type shown in the left column.

Note All scalar values returned by MATLAB are of type double.

Pass Arguments to Shared C Library Functions

MATLAB Primitive Types

C Type Equivalent MATLAB Type
char, byte int8
unsigned char, byte uint8
short intl6
unsigned short uintl6
int int32
long (Windows) int32,
long
long (Linux) int64,
long
unsigned int uint32
unsigned long (Windows) uint32,
long
unsigned long (Linux) uint64,
long
float single
double double
char * char array (1xn)
*char[] cell array of character vectors

The following table shows how MATLAB maps C pointers (column 1) to the equivalent
MATLAB function signature (column 2). Usually, you can pass a variable from the
Equivalent MATLAB Type column to functions with the corresponding Argument Data
Type. See “Pointer Arguments in C Functions” on page 6-45 for information about when
to use a Lib.pointer object instead.

6-17

6 Calling Functions in C Shared Libraries from MATLAB

MATLAB Extended Types

C Pointer Type Argument Equivalent Example Function in
Data Type MATLAB Type “Shared Library
shrlibsample” on
page 6-22
double * doublePtr double addDoubleRef
float * singlePtr single
intsize * (integer |(u)int(size)Ptr |(u)int(size) multiplyShort
pointer types) For example, int64
* becomes
int64Ptr.
bytel[] int8Ptr int8
char[] (null- cstring char array (1xn) |stringToUpper
terminated string
passed by value)
char ** (array of stringPtrPtr cell array of
pointers to strings) character vectors
enum enumPtr
type ** typePtrPtr lib.pointer allocateStruct
For example, object
double **
becomes
doublePtrPtr.
void * voidPtr deallocateStruct
void ** voidPtrPtr lib.pointer
object
struct (C-style structure MATLAB struct |addStructFields
structure)
mxArray * MATLAB array MATLAB array

mxArray **

MATLAB arrayPtr

lib.pointer
object

Pass Arguments to Shared C Library Functions

How MATLAB Displays Function Signatures

Here are things to note about the input and output arguments shown in MATLAB function
signatures.

Many arguments (like int32 and double) are similar to their C counterparts. In these
cases, pass in the MATLAB types shown for these arguments.

Some C arguments (for example, **double, or predefined structures), are different
from standard MATLAB types. In these cases, either pass a standard MATLAB type
and let MATLAB convert it for you, or convert the data yourself using the MATLAB
functions libstruct and libpointer. For more information, see “Manually Convert
Data Passed to Functions” on page 6-20.

C functions often return data in input arguments passed by reference. MATLAB
creates additional output arguments to return these values. Input arguments ending in
Ptr or PtrPtr are also listed as outputs.

For an example of MATLAB function signatures, see “Shared Library shrlibsample” on
page 6-22.

Guidelines for Passing Arguments

Nonscalar arguments must be declared as passed by reference in the library functions.

If the library function uses single subscript indexing to reference a two-dimensional
matrix, keep in mind that C programs process matrices row by row. MATLAB
processes matrices by column. To get C behavior from the function, transpose the
input matrix before calling the function, and then transpose the function output.

Use an empty array, [], to pass a NULL parameter to a library function that supports
optional input arguments. This notation is valid only when the argument is declared as
a Ptror PtrPtr as shown by libfunctions or libfunctionsview.

NULL Pointer

You can create a NULL pointer to pass to library functions in the following ways:

Pass an empty array [] as the argument.
Use the libpointer function:

libpointer; % no arguments

p

p = libpointer('string') % string argument

6-19

6 Calling Functions in C Shared Libraries from MATLAB

6-20

p = libpointer('cstring') % pointer to a string argument
* Use the libstruct function:

p = libstruct('structtype'); % structure type
Empty libstruct Object

To create an empty libstruct object, call Libstruct with only the structtype
argument. For example:

sci = libstruct('c struct')

get(sci)
pl: O
p2: 0
p3: 0

MATLAB displays the initialized values.

Manually Convert Data Passed to Functions

Under most conditions, MATLAB software automatically converts data passed to and from
external library functions to the type expected by the external function. However, you
might choose to convert your argument data manually. For example:

* When passing the same data to a series of library functions, convert it once manually
before calling the first function rather than having MATLAB convert it automatically
on every call. This strategy reduces the number of unnecessary copy and conversion
operations.

* When passing large structures, save memory by creating MATLAB structures that
match the shape of the C structures used in the function instead of using generic
MATLAB structures. The libstruct function creates a MATLAB structure modeled
from a C structure taken from the library.

* When an argument to an external function uses more than one level of referencing (for
example, double **), pass a pointer created using the Libpointer function rather
than relying on MATLAB to convert the type automatically.

See Also

libfunctions | libfunctionsview | libpointer | libstruct

See Also

Related Examples
. “Shared Library shrlibsample” on page 6-22

More About

. “Structure Arguments” on page 6-48

6-21

6 Calling Functions in C Shared Libraries from MATLAB

Shared Library shrlibsample

6-22

MATLAB includes a sample external library called shrlibsample. The library is in the
folder matlabroot\extern\examples\shrlib.

View the source code in MATLAB.

edit([matlabroot '/extern/examples/shrlib/shrlibsample.c'])
edit([matlabroot '/extern/examples/shrlib/shrlibsample.h'])

To use the shrlibsample library, choose one of the following.
* Add the folder to your MATLAB path:

addpath(fullfile(matlabroot, 'extern', 'examples', 'shrlib'))
* Make the folder your current working folder:

cd(fullfile(matlabroot, 'extern', 'examples', 'shrlib'))

Load the library and display the MATLAB signatures for the functions in the library.

loadlibrary('shrlibsample"')
libfunctions shrlibsample -full

Functions in library shrlibsample:

[double, doublePtr] addDoubleRef(double, doublePtr, double)
double addMixedTypes(intl6, int32, double)
[double, c structPtr] addStructByRef(c structPtr)
double addStructFields(c_struct)

c_structPtrPtr allocateStruct(c structPtrPtr)
voidPtr deallocateStruct(voidPtr)

lib.pointer exportedDoubleValue

lib.pointer getListO0fStrings

doublePtr multDoubleArray(doublePtr, int32)
[lib.pointer, doublePtr] multDoubleRef(doublePtr)
intl6Ptr multiplyShort(intl6Ptr, int32)

doublePtr print2darray(doublePtr, int32)
printExportedDoubleValue

cstring readEnum(Enuml)

[cstring, cstring] stringToUpper(cstring)

Pass String Arguments Examples

Pass String Arguments Examples

In this section...

“stringToUpper Function” on page 6-23

“Convert MATLAB Character Array to Uppercase” on page 6-23

stringToUpper Function

The stringToUpper function in the shrlibsample library converts the characters in
the input argument to uppercase. The input parameter, char *, is a C pointer to a string.

EXPORTED_FUNCTION char* stringToUpper(char *input)

{
char *p = input;
if (p != NULL)
while (*p!=0)
*p++ = toupper(*p);
return input;
}

The function signature for stringToUpper is shown in the following table. MATLAB
maps the C pointer type (char *)into cstring so you can pass a MATLAB character
array to the function.

Return Type Name Arguments
[cstring, stringToUpper |(cstring)
cstring]

Convert MATLAB Character Array to Uppercase

This example shows how to pass a MATLAB character array str to a C function,
stringToUpper.

str = 'This was a Mixed Case string';
Load the library containing the stringToUpper function.

if not(libisloaded('shrlibsample'))
addpath(fullfile(matlabroot, 'extern', 'examples', 'shrlib'))

6-23

6 Calling Functions in C Shared Libraries from MATLAB

loadlibrary('shrlibsample")
end

Pass str to the function.

res calllib('shrlibsample', 'stringToUpper',str)

res =
‘THIS WAS A MIXED CASE STRING'

The input parameter is a pointer to type char. However, a MATLAB character array is not
a pointer, so the stringToUpper function does not modify the input argument, str.

str

str =
'This was a Mixed Case string'

See Also
Related Examples

. “Shared Library shrlibsample” on page 6-22
. “Iterate Through an Array” on page 6-42

6-24

Pass Structures Examples

Pass Structures Examples

In this section...

“addStructFields and addStructByRef Functions” on page 6-25

“Add Values of Fields in Structure” on page 6-26

“Preconvert MATLAB Structure Before Adding Values” on page 6-27
“Autoconvert Structure Arguments” on page 6-28

“Pass Pointer to Structure” on page 6-28

addStructFields and addStructByRef Functions

The shrlibsample example library contains two functions with ¢_struct structure
input parameters. ¢_struct is defined in the shrlibsample. h header file.

struct c_struct {
double pl;
short p2;
long p3;

’

Both functions sum the values of the fields in the structure. The input to
addStructFields is c_struct. The input to addStructByRef is a pointer to
c_struct. This function also modifies the fields after summing the values.

addStructFields Function
The addStructFields function sums the values of the fields in a ¢_struct structure.
EXPORTED FUNCTION double addStructFields(struct c struct st)

double t = st.pl + st.p2 + st.p3;

return t;

}
The MATLAB function signature is:

Return Type Name Arguments

double addStructFields (struct c_struct)

6-25

6 Calling Functions in C Shared Libraries from MATLAB

addStructByRef Function

The addStructByRef function sums the values of the fields in a ¢_struct structure,
then modifies the fields. The function returns the sum calculated before modifying the
fields.

EXPORTED FUNCTION double addStructByRef(struct c_struct *st) {
double t = st->pl + st->p2 + st->p3;

st->pl = 5.5;
st->p2 = 1234;
st->p3 = 12345678;
return t;

’

}

Since the function modifies the input argument, MATLAB also returns the input as an
output argument of type ¢_structPtr. The MATLAB function signature is:

Return Type Name Arguments

[double, addStructByRef (c_structPtr)
Cc_structPtr]

You can pass a MATLAB structure to the function and let MATLAB autoconvert the
argument. Or you can pass a pointer to a structure, which avoids creating a copy of the
structure.

Add Values of Fields in Structure

This example shows how to pass a MATLAB structure to the function, addStructFields.

Create and initialize structure sm. Each field is of type double.

sm.pl = 476;
sm.p2 = -299;
sm.p3 = 1000;

Load the library containing the addStructFields function.

if not(libisloaded('shrlibsample'))
addpath(fullfile(matlabroot, 'extern', 'examples', 'shrlib'))
loadlibrary('shrlibsample")

end

6-26

Pass Structures Examples

Call the function. MATLAB automatically converts the fields of structure sm to the library
definition for ¢_struct.

calllib('shrlibsample', 'addStructFields"',sm)

ans = 1177

Preconvert MATLAB Structure Before Adding Values

This example shows how to preconvert structure smto c_struct before calling
addStructFields. If you repeatedly pass sm to functions, preconverting eliminates the
processing time required by MATLAB to autoconvert the structure for each function call.

Create and initialize a MATLAB structure.

sm.pl = 476;
sm.p2 = -299;
sm.p3 = 1000;

Load the library containing the addStructFields function.

if not(libisloaded('shrlibsample'))
addpath(fullfile(matlabroot, 'extern', 'examples', 'shrlib"'))
loadlibrary('shrlibsample')

end

Convert the fields, which are of type double, to match the ¢ _struct structure types,
double, short, and long.

sc = libstruct('c struct',sm);
Display the field names and values.
get(sc)
pl: 476
p2: -299
p3: 1000
Add the field values.
calllib('shrlibsample', 'addStructFields"',sc)

ans = 1177

6-27

6 Calling Functions in C Shared Libraries from MATLAB

Autoconvert Structure Arguments

This example shows how to pass a MATLAB structure to a C library function,
addStructByRef. When you pass the structure, MATLAB automatically converts the
field types, but MATLAB also makes a copy of the fields.

Load the library.

if not(libisloaded('shrlibsample'))
addpath(fullfile(matlabroot, 'extern', 'examples', 'shrlib"'))
loadlibrary('shrlibsample")

end

Create a structure.

S.pl = 476;
S.p2 = -299;
S.p3 = 1000;

Call addStructByRef.
res = calllib('shrlibsample', 'addStructByRef"',S)
res = 1177

MATLAB does not modify the contents of structure S, since it is not a pointer.

S

S = struct with fields:
pl: 476
p2: -299
p3: 1000

Pass Pointer to Structure

This example shows how calling the addStructByRef function with a pointer modifies
the fields in the input argument.

if not(libisloaded('shrlibsample'))
addpath(fullfile(matlabroot, 'extern', 'examples', 'shrlib'))

6-28

See Also

loadlibrary('shrlibsample")
end

Create a structure of type c_struct.

S.pl = 20;
S.p2 = 99;
S.p3 = 3;

Create a pointer sp to the structure.

sp = libpointer('c struct',S);

sp.Value

ans = struct with fields:
pl: 20
p2: 99
p3: 3

Pass the pointer to the function.
res = calllib('shrlibsample', 'addStructByRef',sp)

res = 122

When you pass a pointer, the function modifies the fields in the structure it points to.

sp.Value

ans = struct with fields:
pl: 5.5000
p2: 1234

p3: 12345678

See Also
libpointer | libstruct

Related Examples
. “Shared Library shrlibsample” on page 6-22

6-29

6 Calling Functions in C Shared Libraries from MATLAB

More About
. “Strategies for Passing Structures” on page 6-48
. “Limitations Using Structures” on page 6-11

6-30

Pass Enumerated Types Examples

Pass Enumerated Types Examples

In this section...

“readEnum Function” on page 6-31

“Display Enumeration Values” on page 6-32

readEnum Function

The readEnum function in the shrlibsample library displays a string that matches the
input argument.

EXPORTED FUNCTION char* readEnum(TEnuml val)
{
static char outputs[][20] = {

{"You chose enl"},

{"You chose en2"},

{"You chose en4"},

{"enum not defined"},

{"ERROR"} };

switch (val) {
case enl: return outputs[0];
case en2: return outputs[1];
case end4: return outputs[2];
default : return outputs[3];
}

return outputs[4];

}

The function signature is:

Return Type Name Arguments

cstring readEnum (Enuml)

The values for the Enuml input are defined in the shrlibsample. h header file.

typedef enum Enuml {enl = 1, en2, end4 = 4} TEnuml;

6-31

6 Calling Functions in C Shared Libraries from MATLAB

6-32

Display Enumeration Values

This example shows how to pass enumeration values to the readEnum function in the
shrlibsample library. Load the library.

if not(libisloaded('shrlibsample'))
addpath(fullfile(matlabroot, 'extern', 'examples', 'shrlib'))
loadlibrary('shrlibsample")

end

In MATLAB, you can express an enumerated type as either the enumeration string or its
equivalent numeric value. Call readEnum with a string argument.

calllib('shrlibsample', 'readEnum', 'end")

ans =
'You chose en4'

Call readEnum with the equivalent numeric argument. The Enuml definition declares
enumeration en4 equal to 4.

calllib('shrlibsample', 'readEnum',4)

ans =
'You chose en4'

See Also

Related Examples
. “Shared Library shrlibsample” on page 6-22

Pass Pointers Examples

Pass Pointers Examples

In this section...

“multDoubleRef Function” on page 6-33

“Pass Pointer of Type double” on page 6-33

“Create Pointer Offset from Existing lib.pointer Object” on page 6-34
“Multilevel Pointers” on page 6-35

“allocateStruct and deallocateStruct Functions” on page 6-35

“Pass Multilevel Pointer” on page 6-36

“Return Array of Strings” on page 6-36

multDoubleRef Function

The multDoubleRef function in the shrlibsample library multiplies the input by 5.

EXPORTED FUNCTION double *multDoubleRef(double *x)
{

*X XK= 5;
return x;

}

The input is a pointer to a double, and the function returns a pointer to a double. The
MATLAB function signature is:

Return Type Name Arguments
[lib.pointer, multDoubleRef (doublePtr)
doublePtr]

Pass Pointer of Type double
This example shows how to construct and pass a pointer to C function multDoubleRef.
Load the library containing the function.
if not(libisloaded('shrlibsample'))
addpath(fullfile(matlabroot, 'extern', 'examples', 'shrlib'))

loadlibrary('shrlibsample")
end

6-33

6 Calling Functions in C Shared Libraries from MATLAB

6-34

Construct a pointer, Xptr, to the input argument, X.

X = 13.3;
Xptr = libpointer('doublePtr', X);

Verify the contents of Xptr.
get(Xptr)

Value: 13.3000
DataType: 'doublePtr'

Call the function and check the results.

calllib('shrlibsample', 'multDoubleRef',Xptr);
Xptr.Value

ans = 66.5000

Xptr is a handle object. Copies of this handle refer to the same underlying object and any
operations you perform on a handle object affect all copies of that object. However, Xptr
is not a C language pointer. Although it points to X, it does not contain the address of X.
The function modifies the Value property of Xptr but does not modify the value in the
underlying object X. The original value of X is unchanged.

X
X = 13.3000

Create Pointer Offset from Existing lib.pointer Object

This example shows how to create a pointer to a subset of a MATLAB vector X. The new
pointer is valid only as long as the original pointer exists.

Create a pointer to a vector.

X =1:10;
xp = libpointer('doublePtr', X);
xp.Value
ans = 1x10
1 2 3 4 5 6 7 8 9 10

Pass Pointers Examples

Use the lib.pointer plus operator (+) to create a pointer to the last six elements of X.

Xp2 = xp + 4;
xp2.Value
ans = 1x6
5 6 7 8 9 10

Multilevel Pointers

Multilevel pointers are arguments that have more than one level of referencing. A
multilevel pointer type in MATLAB uses the suffix PtrPtr. For example, use
doublePtrPtr for the C argument double **,

When calling a function that takes a multilevel pointer argument, use a lib.pointer

object and let MATLAB convert it to the multilevel pointer.

allocateStruct and deallocateStruct Functions

The allocateStruct function in the shrlibsample library takes a ¢_structPtrPtr
argument.

EXPORTED FUNCTION void allocateStruct(struct c_struct **val)
{

val=(struct c_struct) malloc(sizeof(struct c_struct));
(*val)->pl = 12.4;
(*val)->p2 = 222;
(*val)->p3 = 333333;
}
The MATLAB function signatures are:
Return Type Name Arguments
Cc_structPtrPtr allocateStruct (c_structPtrPtr)
voidPtr deallocateStruct |(voidPtr)

6-35

6 Calling Functions in C Shared Libraries from MATLAB

6-36

Pass Multilevel Pointer
This example shows how to pass a multilevel pointer to a C function.

Load the library containing allocateStruct and deallocateStruct.

if not(libisloaded('shrlibsample'))
addpath(fullfile(matlabroot, 'extern', 'examples', 'shrlib'))
loadlibrary('shrlibsample')

end

Create a ¢_structPtr pointer.

sp = libpointer('c structPtr');

Call allocateStruct to allocate memory for the structure.
res = calllib('shrlibsample', 'allocateStruct',sp)

res = struct with fields:

pl: 12.4000
p2: 222
p3: 333333

Free the memory created by the allocateStruct function.

calllib('shrlibsample', 'deallocateStruct',sp)

Return Array of Strings

Suppose that you have a library, myLib, with a function, acquireString, that reads an
array of strings. The function signature is:

Return Type Name Arguments

char** acquireString (void)

char** acquireString(void)

The following pseudo-code shows how to manipulate the return value, an array of
pointers to strings.

ptr = calllib(myLib, 'acquireString"')

See Also

MATLAB creates a Lib.pointer object ptr of type stringPtrPtr. This object points to
the first string. To view other strings, increment the pointer. For example, to display the
first three strings, type:

for index = 0:2
tempPtr = ptr + index;
tempPtr.Value

end
ans =

'strl'
ans =

'str2'
ans =

'str3'
See Also
libpointer

6-37

6 Calling Functions in C Shared Libraries from MATLAB

Pass Arrays Examples

In this section...

“print2darray Function” on page 6-38

“Convert MATLAB Array to C-Style Dimensions” on page 6-38
“multDoubleArray Function” on page 6-39

“Preserve 3-D MATLAB Array” on page 6-40

print2darray Function

The print2darray function in the shrlibsample library displays the values of a 2-D
array with three columns and a variable number of rows. The my2d parameter is a two-
dimensional array of double. The len parameter is the number of rows.

EXPORTED FUNCTION void print2darray(double my2d[][3],int len)

{
int indxi,indxj;
for(indxi=0;indxi<len;++indxi)
{
for(indxj=0;indxj<3;++indxj)
{
mexPrintf("%10g",my2d[indxi] [indx]]);
mexPrintf("\n");
}
}

Convert MATLAB Array to C-Style Dimensions

This example shows how to pass data stored columnwise in a MATLAB array to a C
function that assumes a row-by-column format.

Load the library containing the print2darray function.

if not(libisloaded('shrlibsample'))
addpath(fullfile(matlabroot, 'extern', 'examples', 'shrlib"'))
loadlibrary('shrlibsample')

end

Create a MATLAB array with 4 rows and 3 columns.

6-38

Pass Arrays Examples

m = reshape(1:12,4,3)
m = 4x3

1 5 9

2 6 10

3 7 11

4 8 12

Display the values. The first column is [1 4 7 10] instead of [1 2 3 4].

calllib('shrlibsample', 'print2darray',m,4)

ONA~R
=00 U1 N
N © O W

1 1 1

Transpose m to get the desired result.

calllib('shrlibsample', 'print2darray',m',4)

1 5 9
2 6 10
3 7 11
4 8 12

multDoubleArray Function

The multDoubleArray function in the shrlibsample library multiplies each element of
an array by three. The function uses a single subscript (linear indexing) to navigate the
input array.

EXPORTED FUNCTION void multDoubleArray(double *x,int size)

{
/* Multiple each element of the array by 3 */

int 1i;
for (i=0;i<size;i++)
*X++ *= 3;

}
The MATLAB function signature is:

6-39

6 Calling Functions in C Shared Libraries from MATLAB

Return Type Name Arguments
doublePtr multDoubleArray (doublePtr,
int32)

Preserve 3-D MATLAB Array

This example shows how a C function changes the dimensions of a MATLAB array, and
how to restore its shape.

Load the library.
if not(libisloaded('shrlibsample'))
addpath(fullfile(matlabroot, 'extern', 'examples', 'shrlib'))

loadlibrary('shrlibsample')
end

Create a 2-by-5-by-2 input array and display its dimensions.

vin = reshape(1:20,2,5,2);
vs = size(vin)

vs = 1Ix3

2 5 2

Call multDoubleArray to multiply each element. Display the dimensions of the output.

vout = calllib('shrlibsample', 'multDoubleArray',vin,20);
size(vout)

ans = 1x2

2 10

Restore the original shape.

vout = reshape(vout,vs);
size(vout)

ans = 1x3

6-40

Pass Arrays Examples

6-41

6 Calling Functions in C Shared Libraries from MATLAB

Iterate Through an Array

6-42

In this section...

“Create Cell Array from lib.pointer Object” on page 6-42
“Perform Pointer Arithmetic on Structure Array” on page 6-43

Create Cell Array from lib.pointer Object

This example shows how to create a MATLAB® cell array of character vectors,
mlStringArray, from the output of the getList0fStrings function.

Load the shrlibsample library.

if not(libisloaded('shrlibsample'))
addpath(fullfile(matlabroot, 'extern', 'examples', 'shrlib'))
loadlibrary('shrlibsample')

end

Call the getListO0fStrings function to create an array of character vectors. The
function returns a pointer to the array.

ptr = calllib('shrlibsample', 'getListOfStrings');
class(ptr)

ans =
'lib.pointer’

Create indexing variables to iterate through the arrays. Use ptrindex for the array
returned by the function and index for the MATLAB array.

ptrindex = ptr;
index = 1;

Create the cell array of character vectors mlStringArray. Copy the output of
getListOfStrings to the cell array.

% read until end of list (NULL)

while ischar(ptrindex.value{l})
mlStringArray{index} = ptrindex.value{l};
% increment pointer
ptrindex = ptrindex + 1;
% increment array index

Iterate Through an Array

index = index + 1;
end

View the contents of the cell array.
mlStringArray

mlStringArray = 1x4 cell array
{'String 1'} {'String Two'} {0x0 char} {'Last string'}

Perform Pointer Arithmetic on Structure Array

This example shows how to use pointer arithmetic to access elements of a structure. The
example creates a MATLAB structure, based on the ¢_struct definition in the
shrlibsample. h header file.

Load the definition.

if not(libisloaded('shrlibsample'))
addpath(fullfile(matlabroot, 'extern', 'examples', 'shrlib'))
loadlibrary('shrlibsample")

end

Create the MATLAB structure.

s = struct('pl',{1,2,3},'p2',{1.1,2.2,3.3}, 'p3',{0});

Create a pointer to the structure.

sptr = libpointer('c struct',s);

Read the values of the first element.

vl = sptr.Value

vl = struct with fields:
pl: 1
p2: 1
p3: 0

Read the values of the next element by incrementing the pointer.

6-43

6 Calling Functions in C Shared Libraries from MATLAB

sptr = sptr + 1;
v2 = sptr.Value

v2 = struct with fields:
pl: 2
p2: 2
p3: 0

6-44

Pointer Arguments

Pointer Arguments

In this section...
“Pointer Arguments in C Functions” on page 6-45
“Put String into Void Pointer” on page 6-45

“Memory Allocation for External Library” on page 6-46

Pointer Arguments in C Functions

Many functions in external libraries pass arguments by reference. When you pass by
reference, you pass a pointer to the value. In the function signature, pointer arguments
have names ending in Ptr and PtrPtr. Although MATLAB does not support passing by
reference, you can create a MATLAB argument, called a lib.pointer object, that is
compatible with a C pointer. This object is an instance of the MATLAB lib.pointer
class.

Often, you can simply pass a MATLAB variable (passing an argument by value), even
when the signature for that function declares the argument to be a pointer. There are
times, however, when it is useful to pass a lib.pointer.

* You want to modify the data in the input arguments.

* You are passing large amounts of data, and you want to control when MATLAB makes
copies of the data.

* The library stores and uses the pointer so you want the MATLAB function to control
the lifetime of the 1ib.pointer object.

Put String into Void Pointer

C represents characters as 8-bit integers. To use a MATLAB character array as an input
argument, convert the string to the proper type and create a voidPtr. For example:

str = 'string variable';
vp = libpointer('voidPtr',[int8(str) 0]);

The syntax [int8(str) 0] creates the null-terminated string required by the C
function. To read the string, and verify the pointer type, enter:

char(vp.Value)
vp.DataType

6-45

6 Calling Functions in C Shared Libraries from MATLAB

6-46

ans =
string variable
ans =

voidPtr

MATLAB automatically converts an argument passed by value into an argument passed by
reference when the external function prototype defines the argument as a pointer. Call a
function that takes a voidPtr to a string as an input argument using the following
syntax.

func_name([int8(str) 0])

Although MATLAB converts the argument from a value to a pointer, it must be of the
correct type.

Memory Allocation for External Library

In general, MATLAB passes a valid memory address each time you pass a variable to a
library function. Use a Lib.pointer object in cases where the library stores the pointer
and accesses the buffer over time. In these cases, ensure that MATLAB has control over
the lifetime of the buffer and prevent copies of the data from being made. The following
pseudo-code is an example of asynchronous data acquisition that shows how to use a
lib.pointer in this situation.

Suppose an external library myLib has the following functions:

AcquireData(int points,short *buffer)
IsAquisitionDone(void)

where buffer is declared as follows:
short buffer[99]
First, create a 1ib.pointer to an array of 99 points:

BufferSize = 99;
pBuffer = libpointer('intl6Ptr',zeros(BufferSize,1));

Then, begin acquiring data and wait in a loop until it is done:

calllib('myLib', 'AcquireData,BufferSize,pbuffer)

while (~calllib('myLib', 'IsAcquisitionDone')
pause(0.1)

end

See Also

The following statement reads the data in the buffer:

result = pBuffer.Value;

When the library is done with the buffer, clear the MATLAB variable:

clear pBuffer

See Also

lib.pointer

6-47

6 Calling Functions in C Shared Libraries from MATLAB

Structure Arguments

6-48

Structure Argument Requirements

When you pass a MATLAB structure to an external library function:
* Every MATLAB field name must match a field name in the library structure definition.
Field names are case-sensitive.

* MATLAB structures cannot contain fields that are not in the library structure
definition.

» If a MATLAB structure contains fewer fields than defined in the library structure,
MATLAB sets undefined fields to zero.

You do not need to match the data types of numeric fields. The calllib function converts
to the correct numeric type.

Find Structure Field Names

To determine the name and data type of structure fields, you can:

* Consult the library documentation.
* Look at the structure definition in the library header file.
¢ Use the libstruct function.

Strategies for Passing Structures

MATLAB automatically converts a structure to the library definition for that structure
type. For most cases, such as working with small structures, this works fine.

However, when working with repeated calls that pass large structures, convert the
structure manually before making any calls to external functions. You save processing
time by converting the structure data only once at the start rather than at each function
call. You can also save memory if the fields of the converted structure take up less space
than the original MATLAB structure.

To convert manually, call the Llibstruct function to create a libstruct object. Although it
is an object, it behaves like a MATLAB structure. The fields of the object are derived from
an externally specified structure type.

See Also

See Also
libstruct

Related Examples
. “Add Values of Fields in Structure” on page 6-26
. “Preconvert MATLAB Structure Before Adding Values” on page 6-27

More About

. “Limitations Using Structures” on page 6-11

6-49

6 Calling Functions in C Shared Libraries from MATLAB

Explore libstruct Objects

This example shows how to display information about and modify a libstruct object,
c_struct.

Load the shrlibsample library containing the ¢_struct definition.

if not(libisloaded('shrlibsample'))
addpath(fullfile(matlabroot, 'extern', 'examples', 'shrlib'))
loadlibrary('shrlibsample")

end

Create the libstruct object. Object sc is an instance of a MATLAB class called
lib.c_struct.

SC

libstruct('c struct"')

sc
lib.c_struct
Set structure field values.
set(sc,'pl',100, 'p2',150, 'p3"',200)
Display field values.
get(sc)
pl: 100
p2: 150
p3: 200

Modify values using MATLAB field structure syntax.

sc.pl = 23;
get(sc)
pl: 23
p2: 150
p3: 200

6-50

MATLAB Prototype Files

MATLAB Prototype Files

In this section...

“When to Use Prototype Files” on page 6-51

“How to Create Prototype Files” on page 6-51

“How to Specify Thunk Files” on page 6-52

“Deploy Applications That Use loadlibrary” on page 6-52
“loadlibrary in Parallel Computing Environment” on page 6-52
“Change Function Signature” on page 6-52

“Rename Library Function” on page 6-52

“Load Subset of Functions in Library” on page 6-52

“Call Function with Variable Number of Arguments” on page 6-53

When to Use Prototype Files

MATLAB provides a way to modify header file information by creating a prototype file, a
file of MATLAB commands.

Like a header file, the prototype file contains the function signatures for the library. Here
are some reasons for using a prototype file.
» To deploy applications that use loadlibrary (using MATLAB Compiler™).

* Touse loadlibrary in a parallel computing environment (using Parallel Computing
Toolbox™).

» To change signatures of the library functions.

* To rename some of the library functions.

* To use only a small percentage of the functions in the library you are loading.
» To use functions with a variable number of arguments.

You can change the prototypes by editing the prototype file and reloading the library.

How to Create Prototype Files

To create a prototype file, use the mfilename option of the Loadlibrary function.

6-51

6 Calling Functions in C Shared Libraries from MATLAB

How to Specify Thunk Files

For information about default thunk file names, see Loadlibrary. To change the name,
use the thunkfilename option.

Deploy Applications That Use loadlibrary

To deploy a MATLAB application that uses loadlibrary, using MATLAB Compiler:
* Create a prototype file.

» For 64-bit applications, specify a thunk file.

* Include all the relevant files when creating the project with mcc.

loadlibrary in Parallel Computing Environment

To use loadlibrary in a parallel computing environment (using Parallel Computing
Toolbox):

* Create a prototype file.
» For 64-bit applications, specify a thunk file.
» Make sure that all relevant files are accessible to all workers.

Change Function Signature

Edit the prototype file, changing the fcns.LHS or fcns. RHS field for that function. This
edit changes the types of arguments on the left-hand side or right-hand side, respectively.

Rename Library Function

Edit the prototype file, defining the fcns.alias field for that function.

Load Subset of Functions in Library

Edit the prototype file, commenting out the unused functions. This edit reduces the
amount of memory required for the library.

6-52

MATLAB Prototype Files

Call Function with Variable Number of Arguments

Create an alias function in a prototype file for each set of arguments you use to call the
function.

6-53

Intro to MEX-Files

* “MEX Applications” on page 7-3

* “Introducing MEX Files” on page 7-5

* “Using MEX Files” on page 7-6

* “MEX File Placement” on page 7-7

* “Use Help Files with MEX Functions” on page 7-8

* “MATLAB Data” on page 7-9

* “Testing for Most-Derived Class” on page 7-17

* “Build MEX File” on page 7-19

» “Linking Multiple Files” on page 7-20

* “What You Need to Build MEX Files” on page 7-21

* “Change Default Compiler” on page 7-22

¢ “Custom Build with MEX Script Options” on page 7-25

* “Call LAPACK and BLAS Functions” on page 7-26

* “Pass Separate Complex Numbers to Fortran Functions” on page 7-31
* “MATLAB Support for Interleaved Complex API in MEX Functions” on page 7-35
* “Upgrade MEX Files to Use Interleaved Complex API” on page 7-40

* “DoI Need to Upgrade My MEX Files to Use Interleaved Complex API?” on page 7-49
* “Troubleshooting MEX API Incompatibilities” on page 7-52

* “Upgrade MEX Files to Use 64-Bit API” on page 7-55

* “MATLAB Support for 64-Bit Indexing” on page 7-62

* “What If I Do Not Upgrade?” on page 7-63

* “Additional Steps to Update Fortran Source Code” on page 7-66

* “Upgrade MEX Files to Use Graphics Objects” on page 7-69

* “MEX Builds with 64-Bit API by Default” on page 7-74

» “Platform Compatibility” on page 7-75

» “Invalid MEX File Errors” on page 7-76

7 Intro to MEX-Files

* “Run MEX File You Receive from Someone Else” on page 7-78
* “MEX File Dependent Libraries” on page 7-79

* “Document Build Information in the MEX File” on page 7-80

* “Version Compatibility” on page 7-82

* “Getting Help When MEX Fails” on page 7-83

* “MEX API Is Not Thread Safe” on page 7-85

* “Compiling MEX File Fails” on page 7-86

* “Symbol mexFunction Unresolved or Not Defined” on page 7-88
+ “MEX File Segmentation Fault” on page 7-89

* “MEX File Generates Incorrect Results” on page 7-90

* “Memory Management Issues” on page 7-91

7-2

MEX Applications

MEX Applications

You can call your own C, C++, or Fortran programs from the MATLAB command line as if
they were built-in functions. These programs are called MEX functions. To create a MEX
function, write your program using MATLAB APIs, then build using the mex command.
The APIs provide these features:

* Get inputs from MATLAB

* Return results to MATLAB

* Support MATLAB data types

* Call MATLAB functions from the MEX function.
* Integrate seamlessly into MATLAB

MATLAB supports MEX functions written in C, C++, or Fortran.

Writing C Language MEX Functions

As of MATLAB R2018a, there are two choices for building C/C++ MEX functions. MEX
source files written with the “MATLAB Data API” use C++11 programming features, but
are supported by MATLAB R2018a and later. If your MEX files must run in MATLAB
R2017b or earlier, then write source files using functions in the “C Matrix API”.

If you do not need MEX files that work in R2017b and you are familiar with modern C++,
consider using the new “C++ MEX API” on page 9-14 and “MATLAB Data API”. These
APIs provide better type safety, array bounds checking, and support for modern C++
constructs to simplify coding. If you are more comfortable working in the C language,
continue using the “C MEX API” and “C Matrix API”.

Caution Do not mix functions in different APIs. For example, do not use functions in the
C Matrix API with functions in the MATLAB Data API.

MEX Functions Using C++ Programming Features
To use C++11 programming features, see:

* “C++ MEX Applications”
* “C++ MEX API” on page 9-14

7 Intro to MEX-Files

 “MATLAB Data API”
MEX Functions Based on the C Matrix API

To write MEX functions based on the mxArray data type, which is defined in the C Matrix
API, see:

* “C MEX File Applications”
* “C MEX API”
* “C Matrix API”

Writing Fortran MEX Functions

To write Fortran MEX functions, see:

* “Fortran MEX File Applications”
* “Fortran MEX API”
* “Fortran Matrix API”

MATLAB does not support the interleaved complex API for Fortran MEX functions.

See Also

More About
. “Tables of MEX Function Source Code Examples” on page 8-24

Introducing MEX Files

Introducing MEX Files

You can call your own C, C++, or Fortran subroutines from the MATLAB command line as
if they were built-in functions. These programs, called binary MEX files, are dynamically
linked subroutines that the MATLAB interpreter loads and executes. The MEX file
contains only one function or subroutine, and its name is the MEX file name. To call a
MEX file, use the name of the file, without the file extension.

For information about using a MEX function that someone else created, see “MEX File
Functions”.

The term mex stands for “MATLAB executable” and has different meanings, as shown in
the following table.

MEX Term Definition

source MEX file C, C++, or Fortran source code file.

binary MEX file or Dynamically linked subroutine executed in the MATLAB
MEX function environment.

MEX function library |MATLAB C and Fortran API Reference library to perform
operations in the MATLAB environment.

mex build script MATLAB function to create a binary file from a source file.

See Also

Related Examples
. “Create C Source MEX File” on page 8-18

More About

. “Creating C++ MEX Functions with C Matrix API” on page 8-13
. “What You Need to Build MEX Files” on page 7-21

7-3

7 Intro to MEX-Files

Using MEX Files

Binary MEX files, or MEX functions, are subroutines produced from C/C++ or Fortran
source code. They behave just like MATLAB scripts and built-in functions. To call a MEX
function, use the name of the file, without the file extension. The calling syntax depends
on the input and output arguments defined by the MEX file.

To experiment with calling MEX functions, use the code in “Tables of MEX Function
Source Code Examples” on page 8-24 to build and run examples.

While scripts have a platform-independent extension .m, MATLAB identifies MEX files by
platform-specific extensions. The following table lists the platform-specific extensions for
MEX files.

MEX File Platform-Dependent Extension

Platform Binary MEX File Extension
Linux (64-bit) mexab4

Apple Mac (64-bit) mexmaci64

Windows (64-bit) mexw64

You cannot use a binary MEX file on a platform if you compiled it on a different platform.
Recompile the source code on the platform for which you want to use the MEX file. For
information about using MEX S-functions, see your Simulink® documentation.

MEX File Placement

MEX File Placement

Put your MEX files in a folder on the MATLAB path. Alternatively, run MATLAB from the
folder containing the MEX file. MATLAB runs functions in the current working folder
before functions on the path.

To see the current folders on your path, use the path function. You can add new folders

to the path either by using the addpath function, or by selecting File > SetPath to edit
the path.

MEX Files on Windows Network Drives
Windows network drive file servers do not always report folder and file changes correctly.

If you change a MEX file on a network drive and find that MATLAB does not use the latest
changes, change folders away from and then back to the folder containing the file.

See Also
addpath | path

7-7

7

Intro to MEX-Files

Use Help Files with MEX Functions

You can document the behavior of your MEX functions by writing a MATLAB script
containing comment lines. The help command searches for a MATLAB script and displays
the appropriate text.

For example, copy the following text from the arrayProduct.c MEX source file into a
file, arrayproduct.m.

arrayproduct.m Help file for arrayProduct MEX-file.
arrayProduct.c - example in MATLAB External Interfaces

Multiplies an input scalar (multiplier)
times a 1xN matrix (inMatrix)
and outputs a 1xN matrix (outMatrix)

The calling syntax is:

outMatrix = arrayProduct(multiplier, inMatrix)

0° 0% 0% 0% 0° ° O° O° o° o° o°

This is a MEX-file for MATLAB.
Copyright 2007-2014 The MathWorks, Inc.

o° o o°

When you type:
help arrayproduct

MATLAB displays the comments.

See Also
help

Related Examples
. “Document Build Information in the MEX File” on page 7-80
. “Add Help for Your Program”

MATLAB Data

MATLAB Data

In this section...
“The MATLAB Array” on page 7-9
“Lifecycle of mxArray” on page 7-9

“Data Storage” on page 7-10
“MATLAB Data Types” on page 7-12
“Sparse Matrices” on page 7-13

“Using Data Types” on page 7-14

The MATLAB Array

The MATLAB language works with a single object type: the MATLAB array. All MATLAB
variables (including scalars, vectors, matrices, character arrays, cell arrays, structures,
and objects) are stored as MATLAB arrays. In C/C++, the MATLAB array is declared to be
of type mxArray. The mxArray structure contains the following information about the
array:

» Its type

+ Its dimensions

* The data associated with this array

* If numeric, whether the variable is real or complex

» If sparse, its indices and nonzero maximum elements

» If a structure or object, the number of fields and field names

To access the mxArray structure, use the API functions in the Matrix Library. These
functions allow you to create, read, and query information about the MATLAB data in
your MEX files. Matrix Library functions use the mwSize type to avoid portability issues
and allow MEX source files to be compiled correctly on all systems.

Lifecycle of mxArray

Like MATLAB functions, a MEX-file gateway routine on page 8-3 passes MATLAB
variables by reference. However, these arguments are C pointers. A pointer to a variable
is the address (location in memory) of the variable. MATLAB functions handle data

7 Intro to MEX-Files

7-10

storage for you automatically. When passing data to a MEX-file, you use pointers, which
follow specific rules for accessing and manipulating variables. For information about
working with pointers, refer to a programming reference, such as The C Programming
Language by Kernighan, B. W,, and D. M. Ritchie.

Note Since variables use memory, you need to understand how your MEX-file creates an
mxArray and your responsibility for releasing (freeing) the memory. This is important to
prevent memory leaks. The lifecycle of an mxArray—and the rules for managing memory
—depends on whether it is an input argument, output argument, or local variable. The
function you call to deallocate an mxArray depends on the function you used to create it.
For more information, look up the function in “Create or Delete Array” in the C Matrix
Library.

Input Argument prhs

An mxArray passed to a MEX-file through the prhs input parameter exists outside the
scope of the MEX-file. Do not free memory for any mxArray in the prhs parameter. Also,
prhs variables are read-only; do not modify them in your MEX-file.

Output Argument plhs

If you create an mxArray (allocate memory and create data) for an output argument, the
memory and data exist beyond the scope of the MEX-file. Do not free memory on an
mxArray returned in the plhs output parameter.

Local Variable

You allocate memory whenever you use an mxCreate* function to create an mxArray or
when you call the mxCalloc and associated functions. After observing the rules for
handling input and output arguments, the MEX-file should destroy temporary arrays and
free dynamically allocated memory. To deallocate memory, use either mxDestroyArray
or mxFree. For information about which function to use, see MX Matrix Library.

Data Storage

MATLAB stores data in a column-major (column-wise) numbering scheme, which is how
Fortran stores matrices. MATLAB uses this convention because it was originally written in
Fortran. MATLAB internally stores data elements from the first column first, then data
elements from the second column second, and so on, through the last column.

MATLAB Data

For example, given the matrix:

a = ['house'; 'floor'; 'porch']
a:

house

floor

porch

its dimensions are:
size(a)

ans =
3 5

and its data is stored as:
[hlflep]efifofufo]r]s]ofcfefr|n]
If a matrix is N-dimensional, MATLAB represents the data in N-major order. For example,

consider a three-dimensional array having dimensions 4-by-2-by-3. Although you can
visualize the data as:

T g U
e L=V
T L S W
REE T N T X
A E K 0 Page 3
F L P
c a Page 2
o
Page 1

MATLAB internally represents the data for this three-dimensional array in the following
order:

7-11

7 Intro to MEX-Files

E|F|GHI|I |J |[K|L MIN|O (P [Q |R|S |T U]V |W|IX

3 (4 |5 |6 |7 (8 |9 |10 |11 (12 |13 |14 |15 (16 (17 |18 |19 (20 |21 |22 |23

7-12

The mxCalcSingleSubscript function creates the offset from the first element of an
array to the desired element, using N-dimensional subscripting.

MATLAB Data Types

Complex Double-Precision Matrices

The most common data type in MATLAB is the complex double-precision, nonsparse
matrix. These matrices are of type double and have dimensions m-by-n, where m is the
number of rows and n is the number of columns. The data is stored as a vector of
interleaved, double-precision numbers where the real and imaginary parts are stored next
to each other. The pointer to this data is referred to as pa (pointer to array). To test for a
noncomplex matrix, call mxIsComplex.

Before MATLAB Version 9.4 (R2018a), MATLAB used a separate storage representation.
The data is stored as two vectors of double-precision numbers—one contains the real data
and one contains the imaginary data. The pointers to this data are referred to as pr
(pointer to real data) and pi (pointer to imaginary data), respectively. A noncomplex
matrix is one whose pi is NULL. However, to test for a noncomplex matrix, call
mxIsComplex.

Other Numeric Matrices

MATLAB supports single-precision floating-point and 8-, 16-, 32-, and 64-bit integers, both
signed and unsigned.

Logical Matrices

The logical data type represents a logical true or false state using the numbers 1 and
0, respectively. Certain MATLAB functions and operators return logical 1 or logical 0 to
indicate whether a certain condition was found to be true or not. For example, the
statement (5 * 10) > 40 returns a logical 1 value.

MATLAB char Arrays

MATLAB char arrays store data as unsigned 16-bit integers. To convert a MATLAB char
array to a C-style string, call mxArrayToString. To convert a C-style string to a char
array, call mxCreateString.

MATLAB Data

Cell Arrays

Cell arrays are a collection of MATLAB arrays where each mxArray is referred to as a
cell. Cell arrays allow MATLAB arrays of different types to be stored together. Cell arrays
are stored in a similar manner to numeric matrices, except the data portion contains a
single vector of pointers to mxArrays. Members of this vector are called cells. Each cell
can be of any supported data type, even another cell array.

Structures

A 1-by-1 structure is stored in the same manner as a 1-by-n cell array where n is the
number of fields in the structure. Members of the data vector are called fields. Each field
is associated with a name stored in the mxArray.

Objects

Objects are stored and accessed the same way as structures. In MATLAB, objects are
named structures with registered methods. Outside MATLAB, an object is a structure that
contains storage for an additional class name that identifies the name of the object.
Multidimensional Arrays

MATLAB arrays of any type can be multidimensional. A vector of integers is stored where
each element is the size of the corresponding dimension. The storage method of the data
is the same as for matrices.

Empty Arrays

MATLAB arrays of any type can be empty. An empty mxArray is one with at least one

dimension equal to zero. For example, a double-precision mxArray of type double, where
m and n equal 0 and pa is NULL, is an empty array.

Sparse Matrices

Sparse matrices have a different storage convention from full matrices in MATLAB. The
parameter pa is still an array of double-precision numbers or logical values, but this array
contains only nonzero data elements.

There are three additional parameters: nzmax, ir, and jc. Use the mwSize and mwIndex

types when declaring variables for these parameters.

7-13

7 Intro to MEX-Files

7-14

* nzmax is an integer that contains the length of ir and pa. It is the maximum number
of nonzero elements in the sparse matrix.

* 1ir points to an integer array of length nzmax containing the row indices of the
corresponding elements in pa.

* jc points to an integer array of length n+1, where n is the number of columns in the
sparse matrix. In C, the first element of an mxArray has an index of 0. The j ¢ array
contains column index information. If the jth column of the sparse matrix has any
nonzero elements, jc[j] is the index into ir and pa of the first nonzero element in
the jth column. Index jc[j+1] - 1 contains the last nonzero element in that
column. For the jth column of the sparse matrix, jc[j] is the total number of nonzero
elements in all preceding columns. The last element of the jc array, jc[n], is equal to
nnz, the number of nonzero elements in the entire sparse matrix. If nnz is less than
nzmax, more nonzero entries can be inserted into the array without allocating more
storage.

Using Data Types

You can write source MEX files, MAT-file applications, and engine applications in C/C++
that accept any class or data type supported by MATLAB (see “Data Types”). In Fortran,
only the creation of double-precision n-by-m arrays and strings are supported. You use
binary C/C++ and Fortran MEX files like MATLAB functions.

Caution MATLAB does not check the validity of MATLAB data structures created in C/C+
+ or Fortran using one of the Matrix Library create functions (for example,
mxCreateStructArray). Using invalid syntax to create a MATLAB data structure can
result in unexpected behavior in your C/C++ or Fortran program.

Declaring Data Structures

To handle MATLAB arrays, use type mxArray. The following statement declares an
mxArray named myData:

mxArray *myData;

To define the values of myData, use one of the mxCreate* functions. Some useful array
creation routines are mxCreateNumericArray, mxCreateCellArray, and
mxCreateCharArray. For example, the following statement allocates an m-by-1 floating-
point mxArray initialized to 0:

MATLAB Data

myData = mxCreateDoubleMatrix(m, 1, mxREAL);

C/C++ programmers should note that data in a MATLAB array is in column-major order.
(For an illustration, see “Data Storage” on page 7-10.) Use the MATLAB mxGet* array
access routines to read data from an mxArray.

Manipulating Data

The mxGet* array access routines get references to the data in an mxArray. Use these
routines to modify data in your MEX file. Each function provides access to specific
information in the mxArray. Some useful functions are mxGetDoubles,
mxGetComplexDoubles, mxGetM, and mxGetString. Many of these functions have
corresponding mxSet* routines to allow you to modify values in the array.

The following statements read the input prhs[0] into a C-style string buf.

char *buf;

int buflen;

int status;

buflen = mxGetN(prhs[0])*sizeof(mxChar)+1;
buf = mxMalloc(buflen);

status = mxGetString(prhs[0], buf, buflen);

explore Example

There is an example source MEX file included with MATLAB, called explore.c, that
identifies the data type of an input variable. The source code for this example is in
matlabroot/extern/examples/mex, where matlabroot represents the top-level
folder where MATLAB is installed on your system.

Note In platform-independent discussions that refer to folder paths, this documentation
uses the UNIX® convention. For example, a general reference to the mex folder is
matlabroot/extern/examples/mex.

To build the example MEX file, first copy the file to a writable folder on your path.
copyfile(fullfile(matlabroot, 'extern', 'examples', 'mex"', 'explore.c"),'.",'f")
Use the mex command to build the MEX file.

mex explore.c -R2018a

7-15

7 Intro to MEX-Files

Type:

X = 2;
explore(x)

Name: prhs[0]
Dimensions: 1x1
Class Name: double

explore accepts any data type. Try using explore with these examples:

explore([1l 2 3 4 5])

explore 1 2 345

explore({1 2 3 4 5})

explore(int8([1 2 3 4 5]))

explore {1 2 3 4 5}

explore(sparse(eye(5)))

explore(struct('name', 'Joe Jones', 'ext', 7332))
explore(l, 2, 3, 4, 5)

explore(complex(3,4))

—_~ e~ o~ —~

See Also

More About
. “Data Types”

7-16

Testing for Most-Derived Class

Testing for Most-Derived Class

If you define functions that require inputs that are:
* MATLAB built-in types
* Not subclasses of MATLAB built-in types

use the following technique to exclude subclasses of built-in types from the input
arguments.

» Define a cell array that contains the names of built-in types accepted by your function.
* Call class and strcmp to test for specific types in a MATLAB control statement.

The following code tests an input argument, inputArg:

if strcmp(class(inputArg), 'single')
% Call function

else
inputArg = single(inputArg);

end

Testing for a Category of Types

Suppose that you create a MEX function, myMexFcn, that requires two numeric inputs
that must be of type double or single:

outArray = myMexFcn(a,b)

Define a cell array floatTypes that contains the words double and single:
floatTypes = {'double', 'single'};

% Test for proper types

if any(strcmp(class(a),floatTypes)) && ...
any(strcmp(class(b),floatTypes))
outArray = myMexFcn(a,b);

else
% Try to convert inputs to avoid error

end

7-17

7 Intro to MEX-Files

Another Test for Built-In Types

You can use isobject to separate built-in types from subclasses of built-in types. The
isobject function returns false for instances of built-in types. For example:

% Create a intl6 array
a = intl6([2,5,7,11]);
isobject(a)

ans =
0

Determine if an array is one of the built-in integer types:

if isa(a, 'integer') && ~isobject(a)
% a 1s a built-in integer type

end

7-18

Build MEX File

Build MEX File

This example shows how to build the example MEX file timestwo. Use this example to
verify the build configuration for your system.

To build a code example, first copy the file to a writable folder on your path.
copyfile(fullfile(matlabroot, 'extern', 'examples', 'refbook', 'timestwo.c"),"'."','f")
Use the mex command to build the MEX file.

mex timestwo.c

Building with 'Microsoft Visual C++ 2012 (C)'
MEX completed successfully.

This command creates the file timestwo.ext, where ext is the value returned by the
mexext function.

The timestwo function takes a scalar input and doubles it. Call timestwo like a
MATLAB function.

timestwo(4)

ans =
8

See Also

mex | mexext

More About
. “What You Need to Build MEX Files” on page 7-21
. “Upgrade MEX Files to Use 64-Bit API” on page 7-55

7-19

7 Intro to MEX-Files

Linking Multiple Files

7-20

You can combine multiple source files, object files, and file libraries to build a binary MEX
file. List the additional files, with their file extensions, separated by spaces. The name of
the MEX file is the name of the first file in the list.

The following command combines multiple files of different types into a binary MEX file
called circle.ext, where ext is the extension corresponding to the current platform:

mex circle.c square.obj rectangle.c shapes.lib
For a Fortran files, type:
mex circle.F square.o rectangle.F shapes.o

You can use a software development tool like MAKE to manage MEX file projects involving
multiple source files. Create a MAKEFILE that contains a rule for producing object files
from each of your source files. Then invoke the mex build script to combine your object
files into a binary MEX file. This method ensures that your source files are recompiled
only when necessary.

What You Need to Build MEX Files

What You Need to Build MEX Files

To create a MEX file:

* Install a MATLAB-supported compiler. For more information, see Supported and
Compatible Compilers. For information about installing a compiler, visit the vendor's
website.

* Assemble your functions and the MATLAB API functions into one or more C/C++ or
Fortran source files.

* Write a gateway function in one of your source files.
» Use the MATLAB mex command, called a build script, to build a binary MEX file.
* Use your binary MEX file like any MATLAB function.

If you have multiple compilers installed on your system, see “Change Default Compiler”
on page 7-22.

See Also

mex

Related Examples
. “Build MEX File” on page 7-19

More About
. “Troubleshoot MEX Files”
. “Custom Build with MEX Script Options” on page 7-25

External Websites
. Supported and Compatible Compilers

7-21

https://www.mathworks.com/support/compilers/current_release/
https://www.mathworks.com/support/compilers/current_release/
https://www.mathworks.com/support/compilers/current_release/

7 Intro to MEX-Files

Change Default Compiler

7-22

In this section...

“Windows Systems” on page 7-22
“Change Linux System Default Compiler” on page 7-23
“Use Non-Default Compiler on Mac Systems” on page 7-24

“Do Not Use mex -f optionsfile Syntax” on page 7-24

Windows Systems

MATLAB maintains separate default compiler options for C, C++, and Fortran language
files. If you have multiple MATLAB-supported compilers for a language installed on your
Windows system, then MATLAB selects one as the default compiler. To change the default,
use the mex -setup lang command. MATLAB displays a message with links to select a
different default compiler.

If you call mex -setup without the lang argument, then MATLAB displays information
about the default C compiler. MATLAB also displays links to the other supported
languages. To change the default for another language, select a link.

If you call mex -setup from an operating system prompt, MATLAB displays the same
information. However, the messages do not contain links. Instead, MATLAB displays the
appropriate mex command syntax for changing the default compiler. Copy the command
and paste it into the operating system prompt.

The compiler you choose remains the default for that language until you call mex -setup
to select a different default.

C Compilers

To change the default C compiler, at the MATLAB command prompt, type:
mex -setup

mex -setup defaults to information about the C compiler. Alternatively, type:

mex -setup c

Change Default Compiler

C++ Compilers

To change the default C++ compiler, type:

mex -setup cpp

For an example, see “Choose a C++ Compiler” on page 8-31.
Fortran Compilers

To change the default Fortran compiler, type:

mex -setup Fortran

Change Linux System Default Compiler

MATLAB supports only one compiler for each language on Linux platforms. If you have
multiple compilers installed, the default compiler might not be the MATLAB-supported
compiler. You can either change the system default compiler for all applications, or select
the MATLAB-supported compiler each time you run the mex command.

To determine the default gcc compiler for your system, in MATLAB, type:
lwhich gcc
Change System $PATH Variable

You can change the default compiler by editing the system $PATH variable. When you
change the path, this compiler becomes the default for all applications on your system.

To change the $PATH variable, add the folder containing the MATLAB-supported compiler
to the beginning of the path. Refer to your operating system documentation for the
correct command to use.

Select MATLAB-Supported Compiler When Running mex

To change the compiler in the mex command, set the varname variable. varname for the
gcc compiler is GCC, in uppercase letters. For example, if the currently supported gcc
compiler is version 4.7, and it is installed in the /usr/bin/gcc-4.7 folder on your
system, to build timestwo. c, type:

copyfile(fullfile(matlabroot, 'extern', 'examples', 'refbook', 'timestwo.c'),"'."','f")
mex -v GCC='/usr/bin/gcc-4.7' timestwo.c

7-23

7 Intro to MEX-Files

Setting the compiler using the mex command does not change the system default
compiler.

Use Non-Default Compiler on Mac Systems

If you have multiple versions of Xcode installed on your system, MATLAB uses the
compiler defined by the Xcode . app application. You can use the compiler from an
Xcode. X. app, where Xcode. X. app is the name you used to save a previously installed
Xcode version.

Before starting MATLAB, from the Terminal type:

xcode-select -switch /Applications/Xcode.X.app/Contents/Developer

To see which Xcode MATLAB is using, at the Terminal type:

xcode-select -p

Do Not Use mex -f optionsfile Syntax
The mex command - f option to specify a build configuration file will be removed in a

future release. Instead, use the workflows described in this topic for specifying a
compiler.

See Also

mex

More About
. “Choose a C++ Compiler” on page 8-31

External Websites
. Supported and Compatible Compilers

7-24

https://www.mathworks.com/support/compilers/current_release/

Custom Build with MEX Script Options

Custom Build with MEX Script Options

The mex build script is sufficient for building MEX files. Following are reasons that you
might need more detailed information:

* You want to use an Integrated Development Environment (IDE), rather than the
provided script, to build MEX files.
* You want to exercise more control over the build process than the script uses.

Use the mex -v -n options to display the build commands to configure an IDE. You can
also use the mex script options to modify the build steps.

Include Files

Header files for the MATLAB API (MEX files, engine, and MAT-files). These files are in the
matlabroot\extern\include folder.

* matrix.h — C/C++ header file containing a definition of the mxArray structure and
function prototypes for matrix access routines.

* mex.h — Header file for building C/C++ MEX files. Contains function prototypes for
mex routines.

* engine.h — C/C++ header file for MATLAB engine programs. Contains function
prototypes for engine routines.

* mat.h — C/C++ header file for programs accessing MAT-files. Contains function
prototypes for mat routines.

« fintrf.h — Header file for building Fortran MEX files. Contains function prototypes
for mex routines.

See Also

mex

7-25

7 Intro to MEX-Files

Call LAPACK and BLAS Functions

In this section...

“Build matrixMultiply MEX Function Using BLAS Functions” on page 7-26
“Preserve Input Values from Modification” on page 7-27

“Pass Arguments to Fortran Functions from C/C++ Programs” on page 7-28
“Pass Arguments to Fortran Functions from Fortran Programs” on page 7-29
“Modify Function Name on UNIX Systems” on page 7-30

You can call a LAPACK or BLAS function using a MEX file. To create a MEX file, you need
C/C++ or Fortran programming experience and the software resources (compilers and
linkers) to build an executable file. It also is helpful to understand how to use Fortran
subroutines. MATLAB provides the mwlapack and mwblas libraries in matlabroot/
extern/lib. To help you get started, there are source code examples in matlabroot/
extern/examples/refbook.

To call LAPACK or BLAS functions:

Create a source MEX file containing the mexFunction gateway routine.

2 Make sure that you have a supported compiler for your platform. For an up-to-date
list of supported compilers, see Supported and Compatible Compilers.

3 Build a binary MEX file using the mex command and the separate complex build flag
-R2017b.
* Link your source file to one or both of the libraries, mwlapack and mwblas.

* The mwlapack and mwblas libraries only support 64-bit integers for matrix
dimensions. Do not use the -compatibleArrayDims option.

* To build a MEX file with functions that use complex numbers, see “Pass Separate
Complex Numbers to Fortran Functions” on page 7-31.

Build matrixMultiply MEX Function Using BLAS Functions

This example shows how to build the example MEX file matrixMultiply.c, which uses
functions from the BLAS library. To work with this file, copy it to a local folder. For
example:

copyfile(fullfile(matlabroot, 'extern', 'examples', 'refbook', 'matrixMultiply.c'),"'.")

7-26

https://www.mathworks.com/support/compilers.html

Call LAPACK and BLAS Functions

The example files are read-only files. To modify an example, ensure that the file is
writable by typing:

fileattrib('matrixMultiply.c', '+w")
To build the MEX file, type:
mex -v -R2017b matrixMultiply.c -lmwblas

To run the MEX file, type:

A=1[135;2417];
B=1[-5811; 39 21; 4 0 8];
X = matrixMultiply(A,B)

X =

24 35 114
30 52 162

Preserve Input Values from Modification

Many LAPACK and BLAS functions modify the values of arguments passed to them. It is

good practice to make a copy of arguments you can modify before passing them to these
functions. For information about how MATLAB handles arguments to the mexFunction,
see “Managing Input and Output Parameters” on page 8-4.

matrixDivide Example
This example calls the LAPACK function dgesv that modifies its input arguments. The
code in this example makes copies of prhs[0] and prhs[1], and passes the copies to

dgesv to preserve the contents of the input arguments.

To see the example, open matrixDivide. c in the MATLAB Editor. To create the MEX
file, copy the source file to a writable folder.

copyfile(fullfile(matlabroot, 'extern', 'examples', 'refbook', 'matrixDivide.c'),"'.")

To build the file, type:

mex -v -R2017b matrixDivide.c -lmwlapack

To test, type:

7-27

7 Intro to MEX-Files

7-28

A=1[12; 34];
B = [5; 6];
X = matrixDivide(A,B)
x =
-4,.0000
4.5000

Pass Arguments to Fortran Functions from C/C++ Programs

The LAPACK and BLAS functions are written in Fortran. C/C++ and Fortran use different
conventions for passing arguments to and from functions. Fortran functions pass
arguments by reference, while C/C++ functions pass arguments by value. When you pass
by value, you pass a copy of the value. When you pass by reference, you pass a pointer to
the value. A reference is also the address of the value.

When you call a Fortran subroutine, like a function from LAPACK or BLAS, from a C/C++
program, be sure to pass the arguments by reference. To pass by reference, precede the
argument with an ampersand (&), unless that argument is already a reference. For
example, when you create a matrix using the mxGetDoubles function, you create a
reference to the matrix and do not need the ampersand before the argument.

In the following code snippet, variables m, n, p, one, and zero need the & character to
make them a reference. Variables A, B, C, and chn are pointers, which are references.

/* pointers to input & output matrices*/
double *A, *B, *C;

/* matrix dimensions */

mwSignedIndex m,n,p;

/* other inputs to dgemm */

char *chn = "N";

double one = 1.0, zero = 0.0;

/* call BLAS function */
dgemm(chn, chn, &m, &n, &p, &one, A, &m, B, &p, &zero, C, &m);

matrixMultiply Example

The matrixMultiply. c example calls dgemm, passing all arguments by reference. To
see the source code, open matrixMultiply. c in the MATLAB Editor. To build and run
this example, see “Build matrixMultiply MEX Function Using BLAS Functions” on page 7-
26.

Call LAPACK and BLAS Functions

Pass Arguments to Fortran Functions from Fortran Programs

You can call LAPACK and BLAS functions from Fortran MEX files. The following example
takes two matrices and multiplies them by calling the BLAS routine dgemm. To run the
example, copy the code into the editor and name the file calldgemm.F.

#include "fintrf.h"

subroutine mexFunction(nlhs, plhs, nrhs, prhs)
mwPointer plhs(*), prhs(*)

integer nlhs, nrhs

mwPointer mxcreatedoublematrix
mwPointer mxgetpr

mwPointer A, B, C

mwSize mxgetm, mxgetn
mwSignedIndex m, n, p

mwSize numel

double precision one, zero, ar, br
character chl, ch2

chl
ch2 "N'
one 1.0
zero = 0.0

|N|

mxgetpr(prhs(1))
mxgetpr(prhs(2))
mxgetm(prhs(1))
mxgetn(prhs(1))
mxgetn(prhs(2))

ST 3 WX>
I mwnn

plhs(1l) = mxcreatedoublematrix(m, n, 0.0)
C = mxgetpr(plhs(1l))

numel = 1

call mxcopyptrtoreal8(A, ar, numel)

call mxcopyptrtoreal8(B, br, numel)

call dgemm(chl, ch2, m, n, p, one, %val(A), m,
+ %sval(B), p, zero, %val(C), m)

return
end

Link to the BLAS library, which contains the dgemm function.

7-29

7 Intro to MEX-Files

mex -v -R2017b calldgemm.F -lmwblas

Modify Function Name on UNIX Systems

Add an underscore character following the function name when calling LAPACK or BLAS
functions on a UNIX system. For example, to call dgemm, use:

dgemm (argl, arg2, ..., argn);
Or add these lines to your source code:
#if l!defined(WIN32)

#define dgemm dgemm
#endif

See Also

7-30

Pass Separate Complex Numbers to Fortran Functions

Pass Separate Complex Numbers to Fortran Functions

MATLAB stores complex numbers the same way as Fortran, in one vector, pa, with the
real and imaginary parts interleaved.

Before MATLAB Version 9.4 (R2018a), MATLAB stored complex numbers differently than

Fortran, in separate, equal length vectors pr and pi. As a result, complex variables

exchanged between those versions of MATLAB and a Fortran function are incompatible.

MATLAB provides example conversion routines mat2fort and fort2mat that change the

storage format of complex numbers to address this incompatibility. The fort.h header

file defines the mat2fort and fort2mat functions. The source code is in the fort. c file.

* mat2fort — Convert MATLAB separate complex matrix to Fortran complex storage.

+ fort2mat — Convert Fortran complex storage to MATLAB separate real and
imaginary parts.

To use these routines:

1 Include the fort.h header file in your source file, using the statement #include

"fort.h".

2 Link the fort. c file with your program. Specify the full path, matlabroot/
extern/examples/refbook for fort.c in the build command.

3 Toindicate the header file, use the - Ipathname switch. Specify the full path,
matlabroot/extern/examples/refbook for fort.h in the build command.

4 When you specify the full path, replace the term matlabroot with the actual folder
name.

5 Build the function using the mex -R2017b option.

Handling Complex Number Input Values

It is unnecessary to copy arguments for functions that use complex number input values.
The mat2fort conversion routine creates a copy of the arguments for you. For
information, see “Preserve Input Values from Modification” on page 7-27.

Handling Complex Number Output Arguments

For complex variables returned by a Fortran function, do the following:

7-31

7 Intro to MEX-Files

1 When allocating storage for the variable, allocate a real variable with twice as much
space as you would for a variable of the same size. Do this because the returned
variable uses the Fortran format, which takes twice the space. See the allocation of
zout in the example.

2 To make the variable compatible with MATLAB, use the fort2mat function.

Pass Complex Variables — matrixDivideComplex

This example shows how to call a function, passing complex prhs[0] as input and
receiving complex plhs[0] as output. Temporary variables zin and zout contain the
input and output values in Fortran format. To see the example, open
matrixDivideComplex. c in the MATLAB Editor. To create the MEX file, copy the
source file to a writable folder.

copyfile(fullfile(matlabroot, 'extern', 'examples', 'refbook', 'matrixDivideComplex.c'),"'.
Create variables locating the fort. c file and its header file.

fortfile = fullfile(matlabroot, 'extern', 'examples', 'refbook', 'fort.c');
fortheaderdir = fullfile(matlabroot, 'extern', 'examples', 'refbook');

Build the MEX function.

mex('-v','-R2017b"',['-I' fortheaderdir], 'matrixDivideComplex.c',fortfile,'-lmwlapack")

Test the function.

Areal = [1 2; 3 4];
Aimag = [1 1; 0 O];
Breal = [5; 6];
Bimag = [0; 0O];

Acomplex = complex(Areal,Aimag);
Bcomplex = complex(Breal,Bimag);
X = matrixDivideComplex(Acomplex,Bcomplex)

X =
-4.4000 + 0.80001
4.8000 - 0.60001

Handle Fortran Complex Return Type — dotProductComplex

Some level 1 BLAS functions (for example, zdotu and zdotc) return a double complex
type, which the C l